Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 3.016
Filter
1.
ACS Sens ; 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38991227

ABSTRACT

Organ-on-a-Chip (OOC) technology, which emulates the physiological environment and functionality of human organs on a microfluidic chip, is undergoing significant technological advancements. Despite its rapid evolution, this technology is also facing notable challenges, such as the lack of vascularization, the development of multiorgan-on-a-chip systems, and the replication of the human body on a single chip. The progress of microfluidic technology has played a crucial role in steering OOC toward mimicking the human microenvironment, including vascularization, microenvironment replication, and the development of multiorgan microphysiological systems. Additionally, advancements in detection, analysis, and organoid imaging technologies have enhanced the functionality and efficiency of Organs-on-Chips (OOCs). In particular, the integration of artificial intelligence has revolutionized organoid imaging, significantly enhancing high-throughput drug screening. Consequently, this review covers the research progress of OOC toward Human-on-a-chip, the integration of sensors in OOCs, and the latest applications of organoid imaging technologies in the biomedical field.

2.
Cancer Innov ; 3(2): e108, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38946935

ABSTRACT

Cancer remains a major cause of mortality worldwide, and urological cancers are the most common cancers among men. Several therapeutic agents have been used to treat urological cancer, leading to improved survival for patients. However, this has been accompanied by an increase in the frequency of survivors with cardiovascular complications caused by anticancer medications. Here, we propose the novel discipline of uro-cardio-oncology, an evolving subspecialty focused on the complex interactions between cardiovascular disease and urological cancer. In this comprehensive review, we discuss the various cardiovascular toxicities induced by different classes of antineoplastic agents used to treat urological cancers, including androgen deprivation therapy, vascular endothelial growth factor receptor tyrosine kinase inhibitors, immune checkpoint inhibitors, and chemotherapeutics. In addition, we discuss possible mechanisms underlying the cardiovascular toxicity associated with anticancer therapy and outline strategies for the surveillance, diagnosis, and effective management of cardiovascular complications. Finally, we provide an analysis of future perspectives in this emerging specialty, identifying areas in need of further research.

3.
Cancer Innov ; 3(3): e109, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38947756

ABSTRACT

Background: Immune checkpoint inhibitors (ICI) are increasingly used in the first-line treatment of malignant tumors. There is increasing recognition of their cardiotoxicity and, in particular, their potential to lead to myocarditis. Cardiovascular magnetic resonance (CMR) can quantify pathological changes, such as myocardial edema and fibrosis. The purpose of this systematic review and meta-analysis was to examine the evidence for the roles of CMR in predicting prognosis in ICI-associated myocarditis. Methods: PubMed, Cochrane Library, and Web of Science databases were searched until October 2023 for published works investigating the relationship between CMR parameters and adverse events in patients with ICI-associated myocarditis. The analysis included studies reporting the incidence of late gadolinium enhancement (LGE), T1 values, T2 values, and CMR-derived left ventricular ejection fraction (LVEF). Odds ratios (OR) and weighted mean differences (WMD) were combined for binary and continuous data, respectively. Newcastle-Ottawa Scale was used to assess the methodological quality of the included studies. Results: Five cohort studies were included (average age 65-68 years; 25.4% female). Of these, four studies were included in the meta-analysis of LGE-related findings. Patients with major adverse cardiovascular events (MACE) had a higher incidence of LGE compared with patients without MACE (OR = 4.18, 95% CI: 1.72-10.19, p = 0.002). A meta-analysis, incorporating data from two studies, showed that patients who developed MACE exhibited significantly higher T1 value (WMD = 36.16 ms, 95% CI: 21.43-50.89, p < 0.001) and lower LVEF (WMD = - 8.00%, 95% CI: -13.60 to -2.40, p = 0.005). Notably, T2 value (WMD = -0.23 ms, 95% CI: -1.86 to -1.39, p = 0.779) was not associated with MACE in patients with ICI-related myocarditis. Conclusions: LGE, T1 value, and LVEF measured by CMR imaging have potential prognostic value for long-term adverse events in patients with ICI-related myocarditis.

4.
Insect Sci ; 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38973264

ABSTRACT

Insects have to obtain sterols from food due to the inability to synthesize this essential nutrient de novo. For lepidopteran insects, they can convert a variety of phytosterols into cholesterol to meet their growth needs. The final step of the cholesterol biosynthesis is the metabolism of desmosterol catalyzed by 24-dehydrocholesterol reductase (DHCR24). In this study, we identified a DHCR24 homolog in the cotton bollworm Helicoverpa armigera, designated as H. armigera 24-dehydrocholesterol reductase (HaDHCR24)-1. The quantitative expression analyses indicated that HaDHCR24-1 was highly enriched in the midgut where dietary sterol uptake occurs. Compared to the control, the DHCR24-1 mutant larvae generated by clustered regularly interspaced palindromic repeats (CRISPR) / CRISPR-associated nuclease 9 technology accumulated more desmosterol in the gut, while the content of cholesterol was significantly reduced. A similar phenomenon was observed when the DHCR24 inhibitor, amiodarone, was applied to the insects. Moreover, DHCR24-1 played an important role for the usage of ß-sitosterol, a major sterol in plants, in H. armigera, and loss of function of DHCR24-1 resulted in higher mortality on ß-sitosterol. However, the DHCR24 homolog does not necessarily exist in the genomes of all insects. The loss of this gene occurred more frequently in the insects feeding on animals, which further support the role of DHCR24-1 in using phytosterols. This gene may have important potential in developing new strategies to control herbivory pests in Lepidoptera and other insect orders.

5.
Front Oncol ; 14: 1389725, 2024.
Article in English | MEDLINE | ID: mdl-38947891

ABSTRACT

While the incidence of small-cell lung cancer is low, it has a poor prognosis. Patients with extensive small-cell lung cancer account for about 70% of all cases of small-cell lung cancer, with a median overall survival duration of 8-13 months and a 5-year overall survival rate of only 1%-5%. Herein, we report small-cell lung cancer diagnosed by bronchoscopic biopsy in an adult male patient in 2011. The patient had a clinical stage of cT2N2M1 and stage IV disease (i.e., extensive small-cell lung cancer). Still, he survived for 13 years through a combination of chemotherapy, radiotherapy, and cytokine-induced killer (CIK) immunocell thera. Comprehensive tumor markers, lymphocyte subsets, and lung CT images were obtained through long-term follow-up. After 12 cycles of chemotherapy (CE/IP regimen) and 5940cgy/33f radiotherapy, we found that the patient was in an immunosuppressive state, so the patient was given CIK cell therapy combined with chemotherapy. After 2 years of immunocell-combined chemotherapy, there were no significant changes in the primary lesion or other adverse events. In the 13 years since the patient's initial diagnosis, we monitored the changes in the patient's indicators such as CEA, NSE, CD4/CD8 ratio, and CD3+CD4+ lymphocytes, suggesting that these may be the factors worth evaluating regarding the patient's immune status and the effectiveness of combination therapy. In this case, CIK cell immunotherapy combined with chemotherapy was applied to control tumor progression. With a good prognosis, we concluded that CIK cell immunotherapy combined with chemotherapy can prolong patient survival in cases of extensive small-cell lung cancer, and the advantages of combined therapy are reflected in improving the body's immune capacity and enhancing the killing effect of immune cells.

7.
Int J Biol Macromol ; : 133554, 2024 Jun 29.
Article in English | MEDLINE | ID: mdl-38950804

ABSTRACT

With an increasing emphasis on food safety and public health, there is an ongoing effort to develop reliable, non-invasive methods to assess the freshness of diverse food products. Chitosan-based food freshness indicators, leveraging properties such as biocompatibility, biodegradability, non-toxicity, and high stability, offer an innovative approach for real-time monitoring of food quality during storage and transportation. This review introduces intelligent food freshness indicators, specifically those utilizing pH-sensitive dyes like anthocyanins, curcumin, alizarin, shikonin, and betacyanin. It highlights the benefits of chitosan-based intelligent food freshness indicators, emphasizing improvements in barrier and mechanical properties, antibacterial activity, and composite film solubility. The application of these indicators in the food industry is then explored, alongside a concise overview of chitosan's limitations. The paper concludes by discussing the challenges and potential areas for future research in the development of intelligent food freshness indicators using chitosan. Thus, chitosan-based smart food preservation indicators represent an innovative approach to providing real-time data for monitoring food quality, offering valuable insights to both customers and retailers, and playing a pivotal role in advancing the food industry.

8.
Article in English | MEDLINE | ID: mdl-38963398

ABSTRACT

Here, we explored a new manufacturing strategy that uses the mask laser interference additive manufacturing (MLIAM) technique, which combines the respective strengths of laser interference lithography and mask lithography to efficiently fabricate across-scales three-dimensional bionic shark skin structures with superhydrophobicity and adhesive reduction. The phenomena and mechanisms of the MLIAM curing process were revealed and analyzed, showing the feasibility and flexibility. In terms of structural performance, the adhesive force on the surface can be tuned based on the growth direction of the bionic shark skin structures, where the maximum rate of the adhesive reduction reaches about 65%. Furthermore, the evolution of the directional diffusion for the water droplet, which is based on the change of the contact angle, was clearly observed, and the mechanism was also discussed by the models. Moreover, no-loss transportations were achieved successfully using the gradient adhesive force and superhydrophobicity on the surface by tuning the growth direction and modifying by fluorinated silane. Finally, this work gives a strategy for fabricating across-scale structures on micro- and nanometers, which have potential application in bioengineering, diversional targeting, and condenser surface.

9.
Se Pu ; 42(7): 613-622, 2024 Jul.
Article in Chinese | MEDLINE | ID: mdl-38966970

ABSTRACT

Drug targets are biological macromolecules that bind drug molecules in vivo. Therefore, the system-wide identification of drug targets plays a vital role in fully understanding the mechanism of drug action, efficacy, and side effects. The unbiased screening of drug targets may accelerate the process of drug discovery and candidate screening. Mass spectrometry is a key tool for large-scale protein identification and accurate quantification owing to its high acquisition speed, resolution, and sensitivity. Mass spectrometry-based proteomics has been widely used for drug-target screening. It can systematically identify the protein-target landscape of a drug and elucidate drug-protein interactions. Commonly used drug-target characterization methods, such as labeling-based affinity enrichment, require the chemical derivatization of drug molecules, which is not only time-consuming but may also affect the affinity of the drug towards its targets. Furthermore, the spatial effects of the derivatization groups may block interactions between the drug and its targets. Considering the disadvantages of affinity-enrichment methods, strategies that do not require chemical derivatization have received widespread attention. Proteins may undergo denaturation, unfolding, and precipitation under different conditions such as high temperatures, extreme pH, denaturants, and mechanical stress. Binding to small-molecule drugs may alter the folding balance of target proteins. The conformational stability of target proteins can be stabilized by binding with drugs, and protein-drug complexes are more resistant than free proteins to the precipitation induced by different conditions. Based on this mechanism, various large-scale drug-target identification methods using protein precipitation have been developed by combining proteomics and mass spectrometry analysis, including thermal proteome profiling and solvent-, mechanical stress-, and pH-induced protein precipitation. These methods have been successfully applied to the characterization of small-molecule drug targets. In this review, we describe the protein precipitation-based methods used for the high-throughput discovery of drug targets and elucidation of the interactions between drugs and proteins in the past decade. We also summarize the characteristics of each method and discuss their application potential in drug-efficacy evaluation and drug discovery.


Subject(s)
Mass Spectrometry , Proteins , Proteomics , Proteins/chemistry , Chemical Precipitation , Drug Discovery , Drug Evaluation, Preclinical , Humans
10.
Transl Lung Cancer Res ; 13(6): 1307-1317, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38973954

ABSTRACT

Background: Immunotherapy functions by leveraging immunoregulation drugs to bolster the immune system's capacity to identify and eliminate cancerous cells. In contrast to radiotherapy and chemotherapy, immunotherapy exhibits diminished side effects, heightened efficacy, and prolonged survival rates. Nevertheless, meticulous exploration into the determinants governing the advantageous effects of immunotherapy among patients who have previously undergone multiple prior therapies has yet to be conducted. Albumin (ALB) as a nutritional indicator has not been thoroughly studied for its prognostic effect on efficacy or survival. This study aims to identify factors that influence treatment outcomes among patients undergoing third-line or later immunological therapies. Methods: A cohort of 250 lung cancer patients undergoing toripalimab or tislelizumab immunotherapy was the focal point of data collection. The determination of the median value facilitated the establishment of a cut-off point, enabling the categorization of continuous variables. After data collection, a series of statistical analyses of various clinical factors at baseline were performed, including nonparametric tests, logistic regression, and Cox proportional risk modeling. The last follow-up was in May 2022. The primary study endpoint was overall survival (OS). Results: A total of 250 patients were enrolled in the study, of which 129 patients received first- or second-line immunotherapy and 121 patients received third-line or subsequent immunotherapy. According to Cox multifactor regression analysis, in patients receiving either first- or second-line therapy, the ALB level exhibited negligible prognostic relevance (P>0.05). However, in patients subjected to immunotherapy beyond the second line, the ALB level manifested significant prognostic importance (P=0.039). Notably, patients demonstrating elevated ALB levels achieved a higher disease control rate (DCR) (70.0% vs. 52.5%, P=0.05) and displayed a tendency towards a heightened objective response rate (ORR) (20.0% vs. 16.4%, P=0.61) in comparison to those with lower ALB levels. Conclusions: Among patients undergoing immunotherapy in the third line or subsequent treatment phases, elevated ALB levels in baseline correlated with DCR and OS. Thus, the pre-immunotherapy ALB level emerges as an autonomous predictor of OS in patients subjected to third- or later line immunotherapy interventions.

11.
Sci Rep ; 14(1): 15122, 2024 07 02.
Article in English | MEDLINE | ID: mdl-38956289

ABSTRACT

Natalisin (NTL) is a conserved neuropeptide, only present in insects, that has been reported to regulate their sexual activity. In this study, we investigated the involvement of NTL in the reproductive behaviors of a major invasive pest, Spodoptera frugiperda. We identified NTL precursor-encoded transcripts, and evaluated their transcript levels in different stages and tissues of S. frugiperda. The results showed that the NTL transcript level was expressed in both male and female pupae and both male and female adults in the later stage. It was highly expressed in male pupae, 3-day-old male and female adults, and 5-day-old male adults. In different tissues, the expression level is higher in the male and female adult brain and male testis. Immunohistochemical staining of the brain of S. frugiperda female and male adults revealed that three pairs of brain neurons of S. frugiperda adults of both sexes secreted and expressed NTL. To study the role of NTL in reproductive behaviors, NTL was silenced in S. frugiperda male and female adults by RNA interference (RNAi) technology, the results showed that silencing NTL could significantly affect the sexual activity behavior of the adults, reducing the calling rate of females, the courtship rate of males, and the mating rate. In summary, this study emphasizes the important role of NTL in regulating the mating behavior and sexual activity of S. frugiperda in both male and female adults, potentially laying a foundation to employ NTL as a new insect-specific target to control populations of pest insects.


Subject(s)
Neuropeptides , Sexual Behavior, Animal , Spodoptera , Animals , Spodoptera/genetics , Spodoptera/physiology , Male , Female , Neuropeptides/metabolism , Neuropeptides/genetics , Sexual Behavior, Animal/physiology , Insect Proteins/genetics , Insect Proteins/metabolism , Brain/metabolism , RNA Interference , Reproduction
12.
FEMS Microbiol Lett ; 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38982336

ABSTRACT

The extensive use of chemical pesticides, such as herbicides, has resulted in significant environmental pollution. Microbial degradation represents a crucial approach for managing this pesticide-associated pollution, with enrichment culturing serving as a method for isolating pesticide-degrading microorganisms. However, the efficiency of this strategy is limited, often yielding only a few isolated strains. In this study, a new mineral salt medium (MSM) was developed, and a high-throughput method was used for screening pendimethalin-degrading bacteria by measuring the bacterial growth in the MSM. The utilization of this method resulted in the isolation of 56 pendimethalin-degrading bacteria from approximately 2 000 bacterial strains, including 37 Bacillus spp., 10 Alcaligenes spp., 5 Pseudomonas spp., and other 4 strains identified for the first time as pendimethalin-degrading strains. This method may hold promise not only for isolating bacterial strains capable of degrading other pesticides but also for facilitating the utilization of the substantial bacterial strains stored in bacterial banks.

13.
JACC CardioOncol ; 6(3): 439-450, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38983373

ABSTRACT

Background: Relationships between the social determinants of health (SDOH) and cardiovascular health (CVH) of cancer survivors are underexplored. Objectives: This study sought to investigate associations between the SDOH and CVH of adult cancer survivors. Methods: Data from the U.S. National Health Interview Survey (2013-2017) were used. Participants reporting a history of cancer were included, excluding those with only nonmelanotic skin cancer, or with missing data for any domain of SDOH or CVH. SDOH was quantified with a 6-domain, 38-item score, consistent with the Centers for Disease Control and Prevention recommendations (higher score indicated worse deprivation). CVH was quantified based on the American Heart Association's Life's Essential 8, but due to unavailable detailed dietary data, a 7-item CVH score was used, with a higher score indicating worse CVH. Survey-specific multivariable Poisson regression was used to test associations between SDOH quartiles and CVH. Results: Altogether, 8,254 subjects were analyzed, representing a population of 10,887,989 persons. Worse SDOH was associated with worse CVH (highest vs lowest quartile: risk ratio 1.30; 95% CI: 1.25-1.35; P < 0.001), with a grossly linear relationship between SDOH and CVH scores. Subgroup analysis found significantly stronger associations in younger participants (P interaction = 0.026) or women (P interaction = 0.001) but without significant interactions with race (P interaction = 0.051). Higher scores in all domains of SDOH were independently associated with worse CVH (all P < 0.001). Higher SDOH scores were also independently associated with each component of the CVH score (all P < 0.05 for highest SDOH quartile). Conclusions: An unfavorable SDOH profile was independently associated with worse CVH among adult cancer survivors in the United States.

14.
Lipids Health Dis ; 23(1): 214, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38982376

ABSTRACT

Omega-3 polyunsaturated fatty acids (n-3 PUFAs), mainly including α-linolenic acid (ALA), eicosapentaenoic acid (EPA), and docosahexaenoic acid (DHA), possess antioxidant properties and play a crucial role in growth and development. However, the combined effects of ALA, EPA, and DHA at different concentrations have rarely been reported. This work explored the effects of EPA, ALA, and DHA on the viability and antioxidant capacity of mouse hepatocytes, with the objective of enhancing the antioxidant capacity. Within the appropriate concentration range, cell viability and the activity of glutathione S-transferase, superoxide dismutase, and catalase were increased, while the oxidation products of malondialdehyde and the level of intracellular reactive oxygen species were obviously reduced. Thus, oxidative stress was relieved, and cellular antioxidant levels were improved. Finally, response surface optimization was carried out for EPA, ALA, and DHA, and the model was established. The antioxidant capacity of the cells was highest at EPA, ALA, and DHA concentrations of 145.46, 405.05, and 551.52 µM, respectively. These findings lay the foundation for further exploration of the interactive mechanisms of n-3 PUFAs in the body, as well as their applications in nutraceutical food.


Subject(s)
Antioxidants , Cell Survival , Docosahexaenoic Acids , Eicosapentaenoic Acid , Fatty Acids, Omega-3 , Hepatocytes , Oxidative Stress , Reactive Oxygen Species , Superoxide Dismutase , Animals , Mice , Hepatocytes/metabolism , Hepatocytes/drug effects , Antioxidants/pharmacology , Antioxidants/metabolism , Oxidative Stress/drug effects , Fatty Acids, Omega-3/pharmacology , Eicosapentaenoic Acid/pharmacology , Docosahexaenoic Acids/pharmacology , Reactive Oxygen Species/metabolism , Cell Survival/drug effects , Superoxide Dismutase/metabolism , Catalase/metabolism , Malondialdehyde/metabolism , alpha-Linolenic Acid/pharmacology , Glutathione Transferase/metabolism
15.
Food Funct ; 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38958644

ABSTRACT

Background: Diet quality significantly influences aging processes and age-related health outcomes. This study aims to explore the association between dietary quality and accelerated aging in two large cohorts. Methods: This study collected data from the Kailuan and National Health and Nutrition Examination Survey (NHANES) cohorts; participants' dietary quality was evaluated using the American Heart Association (AHA) dietary score and Healthy Eating Index-2015 (HEI-2015), respectively. Accelerated aging in participants was determined by calculating the difference between phenotypic age and chronological age. Logistic regression models were used to explore the association between dietary quality scores and accelerated aging. Additionally, variations in this association across different subgroups were investigated. To minimize the influence of excessive aging, individuals aged 75 and above were excluded in sensitivity analyses. Results: In this study, we included 33 701 participants (27.3% female, mean age 57.29 ± 11.88) from the Kailuan study and 9285 participants (50.6% female, mean age 49.83 ± 17.62) from NHANES. In the Kailuan cohort, individuals with dietary scores ranging from 3 to 5 exhibited a 22% lower risk of accelerated aging compared to those scoring between 0 and 2 (OR = 0.78, 95% CI = 0.72-0.85). Similarly, in the NHANES cohort, participants in the highest quartile of HEI-2015 experienced a 34% reduction in the risk of accelerated aging compared to those in the lowest quartile (OR = 0.66, 95% CI = 0.52-0.84). Subgroup analyses underscored a more pronounced association between dietary quality and accelerated aging among males and individuals with unhealthy lifestyles. Sensitivity analyses confirmed the robustness of the association between dietary quality and accelerated aging. Conclusion: In summary, our study found a significant association between dietary quality and accelerated aging. Better dietary quality was associated with a reduced risk of accelerated aging, particularly among males, smokers, and participants with unhealthy lifestyles.

16.
Asian J Pharm Sci ; 19(3): 100928, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38867804

ABSTRACT

Flurbiprofen (FB), a nonsteroidal anti-inflammatory drug, is widely employed in treating ocular inflammation owing to its remarkable anti-inflammatory effects. However, the racemic nature of its commercially available formulation (Ocufen®) limits the full potential of its therapeutic activity, as the (S)-enantiomer is responsible for the desired anti-inflammatory effects. Additionally, the limited corneal permeability of FB significantly restricts its bioavailability. In this study, we successfully separated the chiral isomers of FB to obtain the highly active (S)-FB. Subsequently, utilizing ion-pairing technology, we coupled (S)-FB with various counter-ions, such as sodium, diethylamine, trimethamine (TMA), and l-arginine, to enhance its ocular bioavailability. A comprehensive evaluation encompassed balanced solubility, octanol-water partition coefficient, corneal permeability, ocular pharmacokinetics, tissue distribution, and in vivo ocular anti-inflammatory activity of each chiral isomer salt. Among the various formulations, S-FBTMA exhibited superior water solubility (about 1-12 mg/ml), lipid solubility (1< lg Pow < 3) and corneal permeability. In comparison to Ocufen®, S-FBTMA demonstrated significantly higher in vivo anti-inflammatory activity and lower ocular irritability (such as conjunctival congestion and tingling). The findings from this research highlight the potential of chiral separation and ion-pair enhanced permeation techniques in providing pharmaceutical enterprises focused on drug development with a valuable avenue for improving therapeutic outcomes.

17.
Pest Manag Sci ; 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38877352

ABSTRACT

BACKGROUND: Understanding how parasitoids respond to temperature is crucial for improving biological control strategies under the context of global warming. This study examined the suitability of Myzus persicae and its parasitoid Aphidius gifuensis to varying temperature conditions, as well as the stage-specific response of A. gifuensis to high temperatures. RESULTS: High temperatures had a significant impact on the both M. persicae and A. gifuensis. When exposed to 36°C, M. persicae developed more slowly and produced smaller adults compared to control, regardless of the duration of exposure (2, 4 or 6 h); additionally, the survival rate of M. persicae nymphs sharply decreased under these conditions. Exposure to 36°C for 4 h negatively impacted the development of A. gifuensis. Female parasitoids exposed to 32°C developed into smaller adults, whereas males exposed to all three temperature levels were smaller compared to control group. Female parasitoids exposed to high temperatures, regardless of the specific heat level and duration, exhibited reduced longevity and decreased fecundity. None of the parasitoids exposed to 36°C for 6 h daily developed into adults. Heat treated during early developmental stages (2 and 4 days old) had a greater influence on parasitoid development, whereas heat treatment at 4 and 6 days old had a more significant impact on its fecundity. CONCLUSION: High temperatures not only directly affected the performance of A. gifuensis, but also exerted indirect effects by influencing the quality of the host aphids M. persicae. The deleterious effects of high temperature on larvae can persist into the adult stage, affecting the longevity and reproduction of adults. These findings are important for the utilization of A. gifuensis in the control of M. persicae in warming environments. © 2024 Society of Chemical Industry.

18.
JAMA Netw Open ; 7(6): e2417115, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38874924

ABSTRACT

Importance: The European Society for Clinical Nutrition and Metabolism (ESPEN) and the European Association for the Study of Obesity (EASO) have recently proposed a consensus definition and diagnostic criteria for sarcopenic obesity (SO). Objective: To implement the ESPEN-EASO diagnostic algorithm to investigate the prevalence of SO and its association with outcomes in patients with solid tumor cancers, with particular regard to associations among SO, overall survival (OS), and patient quality of life (QoL). Design, Setting, and Participants: This prospective cohort study included patients diagnosed with solid tumor starting in May 7, 2013, with the last follow-up on June 30, 2022. Patients with solid tumors were categorized into SO and non-SO groups according to ESPEN-EASO criteria. The primary outcome was OS and the secondary outcomes included patient QoL and risk of intensive care unit (ICU) admission. Data were analyzed from June to December 2023. Results: A total of 6790 patients were included in the study (mean [SD] age, 59.64 [10.77] years; 3489 were female [51.4%]). The prevalence of SO was 4.36% (296 of 6790) in the whole cohort and 14.98% (296 of 1976) in the subgroup with obesity. SO prevalence increased with age. During a median (IQR) follow-up period of 6.83 (5.67-7.04) years, 2103 patients died. Cox regression analysis indicated that SO was independently associated with lower OS (hazard ratio [HR], 1.54; 95% CI, 1.23-1.92), which was observed in both men (HR, 1.51; 95% CI, 1.09-2.10) and women (HR, 1.53; 95% CI, 1.12-2.07). SO was also associated with poorer QoL and higher risk of ICU admission (odds ratio, 2.39; 95% CI, 1.06-5.29). Among the diagnostic components of SO, low hand grip strength (HGS) was the only SO component associated with poor OS (HR, 1.15; 95% CI, 1.04-1.28). Conclusions and Relevance: This cohort study of SO found that SO was significantly associated with lower OS, poorer QoL, and higher risk of ICU admission. Weak HGS, 1 of the diagnostic conditions, was the only component of SO associated with OS. The ESPEN-EASO algorithm appears to be an applicable tool to identify cancer-associated SO, which represents a major clinical complication and factor associated with risk for poor outcomes in these patients.


Subject(s)
Neoplasms , Obesity , Quality of Life , Sarcopenia , Humans , Male , Female , Neoplasms/epidemiology , Neoplasms/mortality , Neoplasms/complications , Middle Aged , Obesity/epidemiology , Obesity/complications , Sarcopenia/epidemiology , Prospective Studies , Aged , Prevalence
19.
Hortic Res ; 11(6): uhae093, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38840939

ABSTRACT

The white water lily (Nymphaea candida), exemplifying nature's resilience, thrives in the high-altitude terrains of Xinjiang, China, serving as an ideal model for investigating cold adaptation mechanisms in aquatic plants. This study meticulously elucidates the complex cold adaptation mechanisms of the white water lily through a comprehensive and integrated methodological approach. We discovered that the water lily undergoes ecodormancy in winter, retaining high cellular viability and growth potential. During overwintering, the white water lily demonstrates effective resource reallocation, a process facilitated by morphological adjustments, thereby strengthening its resistance to cold temperatures. This enhancement is achieved particularly through the compartmentalization of large vacuoles, the accumulation of osmoregulatory substances, and an increased antioxidant capacity. We established the first exhaustive full-length transcriptome for the white water lily. A subsequent comprehensive analysis of the transcriptome, phytohormones, and metabolome uncovered a multifaceted regulatory network orchestrating cold adaptation. Our research spotlights phytohormone signaling, amino acid metabolism, and circadian rhythms as key elements in the water lily's defense against cold. The results emphasize the critical role of nitrogen metabolism, especially amino acid-related pathways, during cold stress. Metabolite profiling revealed the importance of compounds like myo-inositol and L-proline in enhancing cold tolerance. Remarkably, our study demonstrates that the white water lily notably diminishes the utilization of unsaturated fatty acids in its temperature regulation strategies. In conclusion, this research substantially enriches our understanding of the white water lily's intricate cold adaptation mechanisms, offering new perspectives on the adaptive strategies of aquatic plants and potential applications in agricultural advancement.

20.
World J Microbiol Biotechnol ; 40(8): 257, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38937374

ABSTRACT

In this study, the utilization mechanism of oligosaccharides by Bifidobacterium was investigated through the transcriptome sequencing and non-targeted metabolomics technology of Bifidobacterium animalis cultured with fructo-oligosaccharides (FOS) and galacto-oligosaccharides (GOS). The results showed that FOS affected the synthesis of adenosine triphosphate binding transporters (ABC transporters) by increasing the expression levels of msmE, msmG, and gluA. Similarly, GOS improved aminoacyl-tRNA synthases by upregulating the expression of tRNA-Ala, tRNA-Pro, and tRNA-Met. Bifidobacterium animalis cultured with FOS and GOS produced different metabolites, such as histamine, tartaric acid, and norepinephrine, with the functions of inhibiting inflammation, alleviating depression and diseases related to brain and nervous system and maintaining body health. Furthermore, the transcriptome and metabolome analysis results revealed that FOS and GOS promoted the growth and metabolism of Bifidobacterium animalis by regulating the related pathways of carbohydrate, energy, and amino acid metabolism. Overall, the experimental results provided significant insights into the prebiotic effects of FOS and GOS.


Subject(s)
Bifidobacterium animalis , Metabolomics , Oligosaccharides , Prebiotics , Transcriptome , Bifidobacterium animalis/metabolism , Bifidobacterium animalis/genetics , Oligosaccharides/metabolism , Metabolome , Gene Expression Regulation, Bacterial , Gene Expression Profiling , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , ATP-Binding Cassette Transporters/genetics , ATP-Binding Cassette Transporters/metabolism , Amino Acids/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL