Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 138
Filter
1.
FASEB J ; 38(19): e70102, 2024 Oct 15.
Article in English | MEDLINE | ID: mdl-39382026

ABSTRACT

Intestinal mucositis (IM) is one of the most serious side effects of the chemotherapeutic agent irinotecan (CPT-11). Astragalus membranaceus-Pueraria lobata decoction is from the ancient medical book Zhengzhihuibu, has been reported to be used for the treatment of diabetes and hypertension. However, the beneficial effect and mechanism of AP on chemotherapy intestinal mucositis (CIM) remain largely unknown. This study aimed to investigate the efficacy and mechanism of Astragalus membranaceus-Pueraria lobata decoction (AP) in treating CIM. The beneficial effect and mechanism of AP on chemotherapy intestinal mucositis (CIM) were detected using Drosophila model, and combination with RT qPCR, transcriptomics. AP supplementation could significantly alleviate the CPT-11-induced body injury in Drosophila, such as increasing the survival rate, recovering the impaired digestion, improving the movement, and repairing the reproduction and developmental processes. Administration of AP remarkably alleviated the IM caused by CPT-11, including inhibiting the excretion, repairing the intestinal atrophy, improving the acid-base homeostasis imbalance, and inhibiting the disruption of intestinal structure. Mechanistic studies revealed that the protective role of AP against CPT-11 induced intestinal injury was regulated mainly by inhibiting immune-related Toll and Imd pathways, and enhancing the antioxidant capacity. Taken together, these results suggest that AP may be a novel agent to relieve CIM.


Subject(s)
Astragalus propinquus , Irinotecan , Animals , Astragalus propinquus/chemistry , Irinotecan/pharmacology , Mucositis/chemically induced , Mucositis/drug therapy , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/therapeutic use , Drosophila melanogaster/drug effects
2.
Commun Biol ; 7(1): 1323, 2024 Oct 14.
Article in English | MEDLINE | ID: mdl-39402183

ABSTRACT

Peat moss (Sphagnum) is a non-vascular higher plant with unique xylem-like hyaline (H) cells that are accompanied by photosynthetic chlorophyllous cells. These cellular structures play crucial roles in water storage and carbon sequestration. However, it is largely unknown how peat moss develops the H cells. This study systematically explored the Sphagnum Developmental Cell Atlas and Lineage and classified leaf cell development into two lineages with six stages (S0-S5) based on changes in key cellular traits, including the formation of spiral secondary cell walls (S4) and the presence of water pores (S5). Cell lineage-specific subcellular remodeling was transcriptionally regulated during leaf development, and vacuole-mediated clearance of organelles and cell death led to mature dead H cells. Interestingly, expression of land plant conserved Vascular-related NAC Domain (VND) genes correlated with H cell formation. Overall, these results suggest that the origination of xylem-like H cells is related to VND, likely through the neofunctionalization of vacuole-mediated cell death to attempt xylem formation in peat moss, suggesting potential uncoupling of xylem and phloem cell origins. This study positions peat moss as a potential model organism for studying integrative evolutionary cell biology.


Subject(s)
Sphagnopsida , Vacuoles , Xylem , Xylem/metabolism , Xylem/genetics , Sphagnopsida/genetics , Sphagnopsida/metabolism , Vacuoles/metabolism , Gene Expression Regulation, Plant , Plant Leaves/genetics , Plant Leaves/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Cell Death , Cell Lineage/genetics
3.
Plants (Basel) ; 13(19)2024 Oct 07.
Article in English | MEDLINE | ID: mdl-39409678

ABSTRACT

Nitrogen (N) deposition rates have notably increased around the world, especially in high-altitude regions like the Qinghai-Tibetan Plateau (QTP). We conducted a six-year comprehensive experiment to simulate nitrogen deposition in an alpine grassland area near Qinghai Lake. Four levels of nitrogen depositions, i.e., 0 (CK), 8 kg N ha-1year-1 (N1), 40 kg N ha-1year-1 (N2), and 72 kg N ha-1year-1 (N3), with three replicates for each N treatment, were tested annually in early May and early July, with the meticulous collection of plant and soil samples during the peak growth period from 15 July to 15 August. We used the null model to evaluate the impact of environmental filtration and interspecific competition on the dynamics of the plant community was assessed based on the level of discrete species affinities within the plant community by constructing a phylogenetic tree. The results showed that the environmental filter was the predominant driver for the change of community's genealogical fabric. The N2 and N3 treatments increased the influence of soil factors on the change of plant community structure. Climatic factors played a crucial role on the change of plant community in the CK grassland area, while soil factors were dominant in the N1- and N3-treated grasslands.

4.
J Pharm Anal ; 14(10): 100999, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39411581

ABSTRACT

Existing studies have shown that Astragalus membranaceus (AM) and its active ingredients astragalus polysaccharides, oninon, and astragalus methyl glycosides can attenuate X-ray radiation-induced injury. However, there are no studies on how isoliquiritigenin (ISL) attenuate the bystander effect of bone marrow mesenchymal stem cells (BMSCs) induced by carbon ion radiation therapy for lung cancer. This study aimed to investigate the AM-derived small molecule ISL to enhance radiotherapy sensitivity by attenuating the carbon ion radiation-induced bystander effect (RIBE) in BMSCs to elucidate its mechanism of action. In this study, we established a C57BL/6 mouse lung cancer transplantation tumor model in vivo and a co-culture model of A549 cells and BMSCs in vitro, and the models were successfully treated with carbon ions. In further work, we used flow cytometry, immunofluorescence, Western blot, enzyme-linked immunosorbent assay (ELISA), inhibitor, short hairpin RNA (shRNA), Cell Counting Kit-8 (CCK-8), and other methods to illustrate the mechanism. In the next experiments, we found that ISL combined with carbon ion radiotherapy had a significant anti-tumor effect and protected BMSCs from radiation damage. The aim of this study was to investigate the potential of ISL in enhancing the sensitivity of lung cancer cells to radiotherapy and attenuating RIBE in both in vitro and in vivo settings. Traditional Chinese medicine combined with radiation therapy is a promising and innovative treatment for non-small cell lung cancer. These results establish a theoretical foundation for further clinical development of ISL as a potential radiosensitizer option.

5.
Animals (Basel) ; 14(18)2024 Sep 20.
Article in English | MEDLINE | ID: mdl-39335310

ABSTRACT

Uncovering genes associated with muscle growth and body size will benefit the molecular breeding of meat Hu sheep. HMGA2 has proven to be an important gene in mouse muscle growth and is associated with the body size of various species. However, its roles in sheep are still limited. Using sheep myoblast as a cell model, the overexpression of HMGA2 significantly promoted sheep myoblast proliferation, while interference with HMGA2 expression inhibited proliferation, indicated by qPCR, EdU, and CCK-8 assays. Furthermore, the dual-luciferase reporter system indicated that the region NC_056056.1: 154134300-154134882 (-618 to -1200 bp upstream of the HMGA2 transcription start site) was one of the habitats of the HMGA2 core promoter, given the observation that this fragment led to a ~3-fold increase in luciferase activity. Interestingly, SNP rs428001129 (NC_056056.1:g.154134315 C>A) was detected in this fragment by Sanger sequencing of the PCR product of pooled DNA from 458 crossbred sheep. This SNP was found to affect the promoter activity and was significantly associated with chest width at birth and two months old, as well as chest depth at two and six months old. The data obtained in this study demonstrated the phenotypic regulatory role of the HMGA2 gene in sheep production traits and the potential of rs428001129 in marker-assisted selection for sheep breeding in terms of chest width and chest depth.

6.
Environ Sci Pollut Res Int ; 31(39): 52582-52595, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39153068

ABSTRACT

Due to industrialization, soil heavy metal pollution is a growing concern, with humic substances (HS) playing a pivotal role in soil passivation. To address the long duration of the compost humification problem, coal fly ash (CFA) in situ catalyzes the rapid pyrolysis of the cotton stalk (CS) to produce HS to address Cd passivation. Results indicate that the highest yield of humic acid (HA) (8.42%) and fulvic acid (FA) (1.36%) is obtained when the CS to CFA mass ratio is 1:0.5, at 275 ℃ for 120 min. Further study reveals that CFA catalysis CS humification, through the creation of alkaline pyrolysis conditions, Fe2O3 can stimulate the protein and the decomposition of hemicellulose in CS, and then, through the Maillard and Sugar-amine condensation reaction synthesis HA and FA. Applying HS-CS&CFA in Cd-contaminated soil demonstrates a 26.69% reduction in exchangeable Cd within 30 days by chemical complexation. Excellent maize growth effects and environmental benefits of HS products are the prerequisites for subsequent engineering applications. Similar industrial solid wastes, such as steel slag and red mud, rich in Fe2O3, can be explored to identify their catalytic humification effect. It could provide a novel and effective way for industrial solid wastes to be recycled for biomass humification and widely applied in remediating Cd-contaminated agricultural soil.


Subject(s)
Cadmium , Coal Ash , Gossypium , Humic Substances , Soil Pollutants , Coal Ash/chemistry , Cadmium/chemistry , Soil/chemistry , Catalysis
7.
ACS Sens ; 9(8): 4069-4078, 2024 Aug 23.
Article in English | MEDLINE | ID: mdl-39136380

ABSTRACT

Enantioselective recognition is a fundamental property of chiral linkers in chiral metal-organic frameworks (CMOFs). However, clarifying the efficient enantioselective discrimination tailored by achiral linkers remains challenging to explain the chiral recognition mechanism and efficiency. Here, two CMOFs ([Zn2(l-Phe)2(bpa)2]n and [Zn2(l-Phe)2(bpe)2]n) with the completely different enantioselective recognition are synthesized from different nonchiral ligands and the same chiral ligands. The enantioselective recognition of CMOF is undoubtedly related to l-Phe, which differs in the hydrogen bonding to the Trp enantiomer. However, the electrochemical signals are weak and undifferentiated. [Zn2(l-Phe)2(bpe)2]n produces a flattened coplanar conformation with the -C═C- tether in the achiral ligand. The flattened achiral bpee ligand and its surrounding chiral phenylalanine molecules interact through multiple π-π stacking and hydrogen bonding, which together create a chiral sensor that facilitates the recognition of l-Trp. However, [Zn2(l-Phe)2(bpa)2]n produces a stepped conformation due to the -C-C- tether in the achiral ligand; despite the recognition effect of bpea, the recognition is unsatisfactory. Therefore, the chiral recognition of the two CMOFs stems from the synergistic effect between chiral and achiral ligands. This work shows that nonchiral ligands are also crucial in determining enantiomeric discrimination and opens up a new avenue for designing chiral materials.


Subject(s)
Metal-Organic Frameworks , Zinc , Metal-Organic Frameworks/chemistry , Ligands , Stereoisomerism , Zinc/chemistry , Electrochemical Techniques/methods , Phenylalanine/chemistry , Phenylalanine/analogs & derivatives , Hydrogen Bonding
8.
ACS Appl Mater Interfaces ; 16(31): 41534-41541, 2024 Aug 07.
Article in English | MEDLINE | ID: mdl-39045824

ABSTRACT

Macroporous hydrogels have attracted much attention in both industry and academia, where the morphological characteristics of pores are essential. Despite significant improvements on regulating porous structures, the independent configuration and reprogramming of porosity and pore size still remain challenging owing to the lack of a chemical design to decouple the mechanism for adjusting each characteristic. Here, we report a strategy to adaptively control porous features relying on an orthogonal dynamic network. Disulfide bonds are employed to relax polymer chains during freezing via UV irradiation, thus, generating pores in hydrogels. On such a basis, the porosity is continuously switched from 0 to 75% by controlling network relaxation ratios. Subsequently, the pore size is further reversibly manipulated through the association or dissociation of dynamic metallic coordination. As a result, the porosity and pore size achieved independent configurations. Meanwhile, the dynamic nature of the network makes it possible to reprogram the porous character of a prepared hydrogel. Beyond these, the photopatterning of pores represents the capability to regulate the third feature. Our strategy provides an effective way to arbitrarily manipulate porous morphologies, which can inspire the design of future functional porous materials.

9.
Mikrochim Acta ; 191(8): 458, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38985164

ABSTRACT

Chirality has an important impact on chemical and biological research, as most active substances are chiral. In recent decades, metal-organic frameworks (MOFs), which are assembled from metal ions or clusters and organic linkers via metal-ligand bonding, have attracted considerable scientific interest due to their high crystallinity, exceptional porosity and tunable pore sizes, high modularity, and diverse functionalities. Since the discovery of the first functional chiral metal-organic frameworks (CMOFs), CMOFs have been involved in a variety of disciplines such as chemistry, physics, optics, medicine, and pharmacology. The introduction of defect engineering theory into CMOFs allows the construction of a class of defective CMOFs with high hydrothermal stability and multi-stage pore structure. The introduction of defects not only increases the active sites but also enlarges the pore sizes of the materials, which improves chiral recognition, separation, and catalytic reactions, and has been widely investigated in various fields. This review describes the design and synthesis of various defective CMOFs, their characterization, and applications. Finally, the development of the materials is summarized, and an outlook is given. This review should provide researchers with an insight into the design and study of complex defective CMOFs.

10.
Small ; : e2404554, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38966908

ABSTRACT

Chiral inversions of enantiomers have significantly different biological activities, so it is important to develop simple and effective methods to efficiently identify optically pure compounds. Inspired by enzyme catalysis, the construction of chiral microenvironments resembling enzyme pockets in the pore space structure of metal-organic frameworks (MOFs) to achieve asymmetric enantioselective recognition and catalysis has become a new research hotspot. Here, a super-stable porphyrin-containing material PCN-224 is constructed by solvothermal method and a chiral microenvironment around the existing catalytic site of the material is created by post-synthesis modifications of the histidine (His) enantiomers. Experimental and theoretical calculations results show that the modulation of chiral ligands around Zr oxide clusters produces different spatial site resistances, which can greatly affect the adsorption and catalytic level of the enantiomeric molecules of tryptophan guests, resulting in a good enantioselective property of the material. It provides new ideas and possibilities for future chiral recognition and asymmetric catalysis.

11.
Medicine (Baltimore) ; 103(29): e39041, 2024 Jul 19.
Article in English | MEDLINE | ID: mdl-39029027

ABSTRACT

Recent studies have shown systemic inflammatory response, serum glucose, and serum potassium are associated with poor prognosis in spontaneous intracerebral hemorrhage (SICH). This retrospective study aimed to investigate the association of systemic immune-inflammatory index (SII) and serum glucose-potassium ratio (GPR) with the severity of disease and the poor prognosis of patients with SICH at 3 months after hospital discharge. We reviewed the clinical data of 105 patients with SICH, assessed the extent of their disease using Glasgow Coma Scale score, National Institutes of Health Stroke Scale (NIHSS) score, and hematoma volume, and categorized them into a good prognosis group (0-3 scores) and a poor prognosis group (4-6 scores) based on their mRS scores at 3 months after hospital discharge. Demographic characteristics, clinical, laboratory, and imaging data at admission were compared between the 2 groups, bivariate correlations were analyzed using Spearman's correlation coefficients, multivariate logistic regression analysis was used to determine the independent risk factors for poor prognosis of patients with SICH, and finally, SII, GPR, and platelet/lymphocyte ratio (PLR) were examined using the subject's work characteristics (ROC) curve, lymphocyte/monocyte ratio (LMR), and neutrophil/lymphocyte ratio (NLR) for their predictive efficacy for poor prognosis. Patients in the poor prognosis group had significantly higher SII and serum GPR than those in the good prognosis group, and Spearman analysis showed that SII and serum GPR were significantly correlated with the admission Glasgow Coma Scale score as well as the NIHSS score and that SII and GPR increased with the increase in mRS score. Multivariate logistic regression analysis showed that admission NIHSS score, hematoma volume SII, GPR, NLR, and PLR were independently associated with poor patient prognosis. Analysis of the subjects' work characteristic curves showed that the areas under the SII, GPR, NLR, PLR, LMR, and coSII-GPR curves were 0.838, 0.837, 0.825, 0.718, 0.616, and 0.883. SII and GRP were significantly associated with disease severity and short-term prognosis in SICH patients 3 months after discharge, and SII and GPR had better predictive value compared with NLR, PLR, and LMR. In addition, coSII-GPR, a joint indicator based on SII and GPR, can improve the predictive accuracy of poor prognosis 3 months after discharge in patients with SICH.


Subject(s)
Blood Glucose , Cerebral Hemorrhage , Potassium , Humans , Male , Female , Prognosis , Retrospective Studies , Middle Aged , Cerebral Hemorrhage/blood , Cerebral Hemorrhage/mortality , Cerebral Hemorrhage/immunology , Aged , Blood Glucose/analysis , Potassium/blood , Severity of Illness Index , Inflammation/blood , Risk Factors
12.
FASEB J ; 38(13): e23727, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38877845

ABSTRACT

Oxidative stress is proposed as a regulatory element in various neurological disorders, which is involved in the progress of several neurodegenerative diseases such as Alzheimer's disease (AD) and Parkinson's disease (PD). Antioxidant drugs are widely used to alleviate neurodegenerative disorders. Astragalus membranaceus (Huangqi, AM) is a commonly used medicinal herb with a wide range of pharmacological effects. Here, the protective effect and mechanism of AM extract (AME) and its bioactive compounds against neurodegenerative disorders via alleviating oxidative stress were detected using adult Drosophila melanogaster. The drug safety was measured by development analysis; oxidative stress resistance ability was detected by survival rate under H2O2 environment; ROS level was detected by DHE staining and gstD1-GFP fluoresence assay; antioxidative abilitiy was represent by measuring antioxidant enzyme activity, antioxidative-related gene expression, and ATP and MFN2 levels. The neuroprotective effect was evaluated by lifespan and locomotion analysis in Aß42 transgenic and Pink1B9 mutants. AME dramatically increased the survival rates, improved the CAT activity, restored the decreased mRNA expressions of Sod1, Cat, and CncC under H2O2 stimulation, and ameliorated the neurobehavioral defects of the AD and PD. Thirteen small molecules in AM had antioxidant function, in which vanillic acid and daidzein had the most potent antioxidant effect. Vanillic acid and daidzein could increase the activities of SOD and CAT, GSH level, and the expressions of antioxidant genes. Vanillic acid could improve the levels of ATP and MFN2, and mRNA expressions of ND42 and SDHC to rescue mitochondrial dysfunction. Furthermore, vanillic acid ameliorated neurobehavioral defects of PD. Daidzein ameliorated neurobehavioral defect of Aß-induced AD mode. Taken together, AM plays a protective role in oxidative damage, thereby as a potential natural drug to treat neurodegenerative disorders.


Subject(s)
Antioxidants , Astragalus propinquus , Drosophila melanogaster , Neurodegenerative Diseases , Oxidative Stress , Animals , Oxidative Stress/drug effects , Astragalus propinquus/chemistry , Drosophila melanogaster/drug effects , Neurodegenerative Diseases/drug therapy , Neurodegenerative Diseases/metabolism , Antioxidants/pharmacology , Neuroprotective Agents/pharmacology , Drosophila Proteins/metabolism , Drosophila Proteins/genetics , Plant Extracts/pharmacology , Animals, Genetically Modified , Drugs, Chinese Herbal/pharmacology , Hydrogen Peroxide , Amyloid beta-Peptides/metabolism
13.
Food Funct ; 15(13): 6900-6913, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38837182

ABSTRACT

Diet-derived exosome-like nanovesicles are a class of natural active substances that have similar structures and functions to mammalian exosomes. Biyang floral mushrooms and their active extracts have been found to possess radioprotective effects and to deeply explore their novel active substances, the radioprotective effects of Biyang floral mushroom-derived exosome-like nanovesicles (BFMELNs) were investigated in this study. Results showed that these surface-negatively charged vesicles possessed an ideal size and good stability against environmental changes such as temperature and gastrointestinal digestion. Furthermore, BFMELNs could effectively be taken up by HL-7702 cells and Caco-2 cells through cellular phagocytosis mediated by clathrin and dynein. Emphatically, BFMELNs with an exosome-like morphology contained RNA, proteins, lipids, polyphenols and flavonoids to exert good antioxidant and radioprotective effects in vitro. Meanwhile, BFMELNs also exhibited good radioprotective effects by restoring peripheral blood indexes, mitigating damage to organs, and regulating the redox state in mice. Collectively, BFMELNs showed promise as novel and natural radioprotective nano-agents for preventing IR-induced oxidative stress damage.


Subject(s)
Exosomes , Radiation, Ionizing , Radiation-Protective Agents , Humans , Animals , Mice , Radiation-Protective Agents/pharmacology , Radiation-Protective Agents/chemistry , Exosomes/metabolism , Caco-2 Cells , Male , Agaricales/chemistry , Antioxidants/pharmacology , Antioxidants/chemistry , Oxidative Stress/drug effects
14.
Langmuir ; 40(19): 10059-10069, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38700229

ABSTRACT

Due to its ultrahigh theoretical capacitance, vanadium pentoxide (V2O5) is considered to be a valid candidate for advanced supercapacitors. However, because of the low electron/electrolyte transfer rate, the capacitive performance still remains to be improved. In this report, Cu doping is adopted to improve the capacitive performance by a two-steps strategy consisting of microwave-assisted solvothermal and postannealing treatments. The electrochemical results indicate that the Cu doping was beneficial for improving the specific capacitance, extending the potential window, and improving the rate ability and long-term stability of V2O5. Furthermore, the mechanism for the performance improvement is explained in detail by combining theoretical calculation and experiments. The results indicated that, compared with that of undoped V2O5, the larger interplanar spacing, better electrical conductivity, a larger proportion of V3+/V4+, and more abundant oxygen vacancies result in an improved capacitive performance. Our proposed Cu-doped V2O5 (Cu-V2O5) can be used as both a positive electrode and a negative electrode for the assembly of the symmetric supercapacitor, which can be used as an energy storage device for light emitting diode lamps.

16.
Int Immunopharmacol ; 134: 112245, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38749334

ABSTRACT

Gastric cancer (GC) has posed a great threat to the lives of people around the world. To date, safer and more cost-effective therapy for GC is lacking. Traditional Chinese medicine (TCM) may provide some new options for this. Guiqi Baizhu Formula (GQBZF), a classic TCM formula, has been extensively used to treat GC, while its bioactive components and therapeutic mechanisms remain unclear. In this study, we evaluated the underlying mechanisms of GQBZF in treating GC by integrative approach of chemical bioinformatics. GQBZF lyophilized powder (0.0625 mg/mL, 0.125 mg/mL) significantly attenuated the expression of p-IGF1R, PI3K, p-PDK1, p-VEGFR2 to inhibit the proliferation, migration and induce apoptosis of gastric cancer cells, which was consistent with the network pharmacology. Additionally, atractylenolide Ⅰ, quercetin, glycyrol, physcione and aloe-emodin, emodin, kaempferol, licoflavone A were found to be the key compounds of GQBZF regulating IGF1R and VEGFR2, respectively. And among which, glycyrol and emodin were determined as key active compounds against GC by farther vitro experiments and LC/MS. Meanwhile, we also found that glycyrol inhibited MKN-45 cells proliferation and enhanced apoptosis, which might be related to the inhibition of IGF1R/PI3K/PDK1, and emodin could significantly attenuate the MKN-45 cells migration, which might be related to the inhibition of VEGFR2-related signaling pathway. These results were verified again by molecular dynamics simulation and binding interaction pattern. In summary, this study suggested that GQBZF and its key active components (glycyrol and emodin) can suppress IGF1R/PI3K/PDK1 and VEGFR2-related signaling pathway, thereby inhibiting tumor cell proliferation and migration and inducing apoptosis. These findings provided an important strategy for developing new agents and facilitated clinical use of GQBZF against GC.


Subject(s)
Apoptosis , Cell Movement , Cell Proliferation , Computational Biology , Drugs, Chinese Herbal , Receptor, IGF Type 1 , Stomach Neoplasms , Vascular Endothelial Growth Factor Receptor-2 , Stomach Neoplasms/drug therapy , Stomach Neoplasms/metabolism , Humans , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/chemistry , Cell Line, Tumor , Cell Proliferation/drug effects , Apoptosis/drug effects , Cell Movement/drug effects , Receptor, IGF Type 1/metabolism , Vascular Endothelial Growth Factor Receptor-2/metabolism , Computational Biology/methods , Signal Transduction/drug effects , Pyruvate Dehydrogenase Acetyl-Transferring Kinase/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Receptors, Somatomedin/metabolism , Network Pharmacology , Antineoplastic Agents, Phytogenic/pharmacology
17.
Immunobiology ; 229(3): 152809, 2024 May.
Article in English | MEDLINE | ID: mdl-38788361

ABSTRACT

OBJECTIVE: This study investigated the effect of oxidative stress and the TLR4/NF-κB/NLRP3 pathway on the pathogenesis of acute lung injury (ALI) induced by high-altitude hypoxia. METHODS: Rats were placed in an animal hyperbaric oxygen chamber to establish a rat model of ALI induced by high-altitude hypoxia after treatment with N-acetylcysteine (NAC; a reactive oxygen species [ROS] inhibitor) or/and MCC950 (an NLPR3 inflammasome inhibitor). After modeling, the wet-to-dry weight ratio (W/D) of rat lung tissues was calculated. In lung tissues, ROS levels were detected with immunofluorescence, the enzyme activity was tested with the kit, and the expression of TLR4/NF-κB/NLRP3 pathway-related genes and proteins was measured with western blotting and qRT-PCR. The levels of inflammatory factors in the serum were quantified with ELISA. RESULTS: After modeling, rats showed significantly increased W/D, ROS levels, and Malondialdehyde (MDA) concentrations and markedly diminished Superoxide dismutase (SOD) and Glutathione (GSH) concentrations in lung tissues (all P < 0.01), accompanied by substantially enhanced serum levels of TNF-α, IL-6, and IL-1ß, significantly reduced serum levels of IL-10, and remarkably augmented TLR4, NLRP3, p-NF-κB p65, NF-κB p65 mRNA, and Caspase-1 expression in lung tissues (all P < 0.01). Furthermore, treatment with NAC or MCC950 alone or in combination prominently lowered the W/D of lung tissues (P < 0.01), serum levels of TNF-α (P < 0.05), IL-6 (P < 0.05), and IL-1ß (P < 0.01), and NF-κB p65 expression and phosphorylation (P < 0.05, P < 0.01) while significantly increasing SOD and GSH concentrations (P < 0.05, P < 0.01) and serum levels of IL-10 (P < 0.01) in modeled rats. Meanwhile, treatment of NAC alone or combined with MCC950 significantly reduced MDA concentration and ROS levels (P < 0.05, P < 0.01) in modeled rats, and treatment of MCC950 alone or combined with NAC considerably declined TLR4, NLRP3, and Caspase-1 expression in modeled rats (P < 0.05, P < 0.01). CONCLUSION: Inhibition of oxidative stress and the TLR4/NF-κB/NLRP3 pathway can ameliorate ALI in rats exposed to high-altitude hypoxia.


Subject(s)
Acute Lung Injury , Disease Models, Animal , NF-kappa B , NLR Family, Pyrin Domain-Containing 3 Protein , Oxidative Stress , Signal Transduction , Toll-Like Receptor 4 , Animals , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Toll-Like Receptor 4/metabolism , Acute Lung Injury/etiology , Acute Lung Injury/metabolism , Rats , NF-kappa B/metabolism , Male , Rats, Sprague-Dawley , Reactive Oxygen Species/metabolism , Cytokines/metabolism , Hypoxia/metabolism , Inflammasomes/metabolism , Lung/metabolism , Lung/pathology , Altitude , Sulfonamides/pharmacology
18.
ACS Appl Mater Interfaces ; 16(14): 17361-17370, 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38556802

ABSTRACT

Chiral metal-organic frameworks (MOFs) have attracted much attention due to their highly tunable regular microporous structures. However, chiral electrochemical recognition based on chiral MOFs is often limited by poor charge separation and slow charge transfer kinetics. In this case, C60 can be encapsulated into the cavity of [La(BTB)]n by virtue of host-guest interactions through π-π stacking to synthesize the chiral composite C60@[La(BTB)]n and amplify electrochemically controlled enantioselective interactions with the target enantiomers. A large electrostatic potential difference is generated in chiral C60@[La(BTB)]n due to the host-guest interaction and the inhomogeneity of the charge distribution, leading to the generation of a strong built-in electric field and thus an overall enhancement of the conductivity of the chiral material. Their enantioselective detection of tryptophan enantiomers was demonstrated by electrochemical measurement. The results showed that chiral MOF materials can be used for enantiomeric recognition. It is worth noting that this new material derived from the concept of host-guest interaction to enhance charge separation opens up unprecedented possibilities for future enantioselective recognition and separation.

19.
Materials (Basel) ; 17(7)2024 Mar 31.
Article in English | MEDLINE | ID: mdl-38612111

ABSTRACT

Upcycling Cr-containing sulfate waste into catalysts for CO2 hydrogenation reaction benefits both pollution mitigation and economic sustainability. In this study, FeCrO3/Fe2O3 catalysts were successfully prepared by a simple hydrothermal method using Cr-containing sodium sulfate (Cr-SS) as a Cr source for efficient conversion and stable treatment of Cr. The removal rate of Cr in Cr-SS can reach 99.9% at the optimized hydrothermal conditions. When the synthesized catalysts were activated and used for the CO2 hydrogenation reaction, a 50% increase in CO2 conversion was achieved compared with the catalyst prepared by impregnation with a comparable amount of Cr. According to the extraction and risk assessment code (RAC) of the Reference Office of the European Community Bureau (BCR), the synthesized FeCrO3/Fe2O3 is risk-free. This work not only realizes the detoxification of the Cr-SS but transfers Cr into stable FeCrO3 for application in a catalytic field, which provides a strategy for the harmless disposal and resource utilization of Cr-containing hazardous waste.

20.
Ecotoxicol Environ Saf ; 277: 116380, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38677068

ABSTRACT

The interaction between microplastics (MPs) and cadmium (Cd) poses a threat to agricultural soil environments, and their effects on plant growth and rhizosphere microbial community functions are not yet clear. In this study, energy sorghum was used as a test plant to investigate the effects of two types of MPs, polystyrene (PS) and polyethylene (PE), at different particle sizes (13 µm, 550 µm) and concentrations (0.1%, 1% w/w), and Cd, as well as their interactions, on the growth of sorghum in a soil-cultivation pot experiment. The results showed that the combined effects of MP and Cd pollution on the dry weight and Cd accumulation rate in sorghum varied depending on the type, concentration, and particle size of the MPs, with an overall trend of increasing stress from combined pollution with increasing Cd content and accumulation. High-throughput sequencing analysis revealed that combined MP and Cd pollution increased bacterial diversity, and the most significant increase was observed in the abundance-based coverage estimator (ACE), Shannon, and Sobs indices in the 13 µm 1% PS+Cd treatment group. Metagenomic analysis based on the Kyoto Encyclopedia of Genes and Genomes (KEGG) metabolic pathways revealed that 19 groups of metabolic pathways, including microbial metabolism and methane metabolism, differed significantly under combined MP and Cd pollution. Hierarchical clustering results indicated that Cd treatment and combined MP and Cd treatment affected the abundances of sorghum rhizosphere soil nitrogen (N) and phosphorus (P) cycling genes and that the type of MP present was an important factor affecting N and P cycling genes. The results of this study provide a basis for exploring the toxic effects of combined MP and Cd pollution and for conducting soil environmental risk assessments.


Subject(s)
Cadmium , Microplastics , Rhizosphere , Soil Microbiology , Soil Pollutants , Sorghum , Sorghum/drug effects , Sorghum/microbiology , Cadmium/toxicity , Soil Pollutants/toxicity , Microplastics/toxicity , Soil/chemistry , Particle Size , Bacteria/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL