Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 155
Filter
Add more filters








Publication year range
1.
Dalton Trans ; 53(36): 15176-15189, 2024 Sep 18.
Article in English | MEDLINE | ID: mdl-39221457

ABSTRACT

Cyclometalated iridium(III) compounds have been widely explored due to their outstanding photo-physical properties and multiple anticancer activities. In this paper, three cyclometalated iridium(III) compounds [Ir(ppy)2(DBDIP)]PF6 (5a), [Ir(bzq)2(DBDIP)]PF6 (5b), and [Ir(piq)2(DBDIP)]PF6 (5c) (ppy: 2-phenylpyridine; bzq: benzo[h]quinoline; piq: 1-phenylisoquinoline, and DBDIP: 2-(2,3-dihydrobenzo[b][1,4]dioxin-6-yl)-1H-imidazo[4,5-f][1,10]phenanthroline) were synthesized and the mechanism of antitumor activity was investigated. Compounds photoactivated by visible light show strong cytotoxicity against tumor cells, especially toward A549 cells. Biological experiments such as migration, cellular localization, mitochondrial membrane potential and permeability, reactive oxygen species (ROS) and calcium ion level detection were performed, and they demonstrated that the compounds induced the apoptosis of A549 cells through a mitochondrial pathway. At the same time, oxidative stress caused by ROS production increases the release of damage-related molecules and the expression of porogen gasdermin D (GSDMD), and the content of LDH released from damaged cell membranes also increased. Besides, the content of the lipid peroxidation product, malondialdehyde (MDA), increased and the expression of GPX4 decreased. These indicate that the compounds promote cell death by combining ferroptosis and pyroptosis. The results reveal that cyclometalated iridium(III) compounds 5a-5c may be a potential chemotherapeutic agent for photodynamic therapy of cancers.


Subject(s)
Antineoplastic Agents , Coordination Complexes , Drug Screening Assays, Antitumor , Iridium , Reactive Oxygen Species , Humans , Iridium/chemistry , Iridium/pharmacology , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis , Coordination Complexes/pharmacology , Coordination Complexes/chemistry , Coordination Complexes/chemical synthesis , Reactive Oxygen Species/metabolism , A549 Cells , Apoptosis/drug effects , Light , Membrane Potential, Mitochondrial/drug effects , Cell Proliferation/drug effects , Lung Neoplasms/drug therapy , Lung Neoplasms/pathology , Lung Neoplasms/metabolism , Molecular Structure , Calcium/metabolism , Cell Movement/drug effects , Cell Survival/drug effects , Photochemical Processes , Photosensitizing Agents/pharmacology , Photosensitizing Agents/chemistry , Photosensitizing Agents/chemical synthesis
2.
J Med Chem ; 67(18): 16195-16208, 2024 Sep 26.
Article in English | MEDLINE | ID: mdl-39264254

ABSTRACT

In this paper, three new iridium(III) complexes: [Ir(piq)2(DFIPP)]PF6 (piq = deprotonated 1-phenylisoquinoline, DFIPP = 3,4-difluoro-2-(1H-imidazo[4,5-f][1,10]phenenthrolin-2-yl)phenol, 3a), [Ir(bzq)2(DFIPP)]PF6 (bzq = deprotonated benzo[h]quinoline, 3b), and [Ir(ppy)2(DFIPP)]PF6 (ppy = deprotonated 1-phenylpyridine, 3c), were synthesized and characterized. The complexes were found to be nontoxic to tumor cells via 3-(4,5-dimethylthiazole-2-yl)-diphenyltetrazolium bromide (MTT) assay. Surprisingly, its liposome-entrapped complexes 3alip, 3blip, and 3clip on B16 cells showed strong cytotoxicity (IC50 = 13.6 ± 2.8, 9.6 ± 1.1, and 18.9 ± 2.1 µM). Entry of 3alip, 3blip, and 3clip into B16 cells decreases mitochondrial membrane potential, regulates Bcl-2 family proteins, releases cytochrome c, triggers caspase family cascade reaction, and induces apoptosis. In addition, we also found that 3alip, 3blip, and 3clip triggered ferroptosis and autophagy. In vivo studies demonstrated that 3blip inhibited melanoma growth in C57 mice with a high inhibitory rate of 83.95%, and no organic damage was found in C57 mice.


Subject(s)
Antineoplastic Agents , Apoptosis , Coordination Complexes , Iridium , Liposomes , Iridium/chemistry , Iridium/pharmacology , Animals , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis , Mice , Coordination Complexes/chemistry , Coordination Complexes/pharmacology , Coordination Complexes/chemical synthesis , Coordination Complexes/therapeutic use , Apoptosis/drug effects , Cell Line, Tumor , Humans , Mice, Inbred C57BL , Cell Proliferation/drug effects , Drug Screening Assays, Antitumor , Melanoma, Experimental/drug therapy , Melanoma, Experimental/pathology , Melanoma, Experimental/metabolism , Membrane Potential, Mitochondrial/drug effects
3.
J Inorg Biochem ; 261: 112706, 2024 Dec.
Article in English | MEDLINE | ID: mdl-39197384

ABSTRACT

In this study, the ligand EIPP (5-ethoxy-2-(1H-imidazo[4,5-f] [1,10] phenanthrolin-2-yl)phenol) and [Ir(ppy)2(EIPP)](PF6)] (5a, ppy = 2-phenylpyridine) and [Ir(piq)2(EIPP)](PF6)] (5b, piq = 1-phenylisoquinoline) were synthesized and they were entrapped into liposomes to produce 5alipo and 5blipo. 5a and 5b were characterized via HRMS, NMR, UV-vis and IR. The cytotoxicity of 5a, 5b, 5alipo and 5blipo on cancer and non-cancer cells was estimated using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT). MTT assay demonstrated that 5a and 5b did not show any significant cellular activity but their liposome-encapsulated 5alipo and 5blipo had significant toxic effects. The mechanism of 5alipo, 5blipo-inducing apoptosis was explored by studying cellular uptake, mitochondrial localization, mitochondrial membrane potential, cytochrome C, glutathione (GSH), malondialdehyde (MDA) and protein immunoblotting. The results demonstrated that 5alipo and 5blipo caused a release of cytochrome C, downregulated the expression of Bcl-2, upregulated the expression of BAX, activated caspase 3, and downregulated PARP expression. It was shown that 5alipo and 5blipo could inhibit cancer cell proliferation in G2/M phase by regulating p53 and p21 proteins. Additionally, 5alipo and 5blipo induced autophagy through an adjustment from LC3-I to LC3-II and caused ferroptosis. The in vivo antitumor activity of 5alipo was examined in detail.


Subject(s)
Antineoplastic Agents , Apoptosis , Coordination Complexes , Iridium , Liposomes , Humans , Iridium/chemistry , Iridium/pharmacology , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis , Apoptosis/drug effects , Animals , Coordination Complexes/pharmacology , Coordination Complexes/chemistry , Coordination Complexes/chemical synthesis , Mice , Cell Line, Tumor , Cell Proliferation/drug effects
4.
Physiol Plant ; 176(3): e14386, 2024.
Article in English | MEDLINE | ID: mdl-38887947

ABSTRACT

Silk of maize (Zea mays L.) contains diverse metabolites with complicated structures and functions, making it a great challenge to explore the mechanisms of metabolic regulation. Genome-wide identification of silk-preferential genes and investigation of their expression regulation provide an opportunity to reveal the regulatory networks of metabolism. Here, we applied the expression quantitative trait locus (eQTL) mapping on a maize natural population to explore the regulation of gene expression in unpollinated silk of maize. We obtained 3,985 silk-preferential genes that were specifically or preferentially expressed in silk using our population. Silk-preferential genes showed more obvious expression variations compared with broadly expressed genes that were ubiquitously expressed in most tissues. We found that trans-eQTL regulation played a more important role for silk-preferential genes compared to the broadly expressed genes. The relationship between 38 transcription factors and 85 target genes, including silk-preferential genes, were detected. Finally, we constructed a transcriptional regulatory network around the silk-preferential gene Bx10, which was proposed to be associated with response to abiotic stress and biotic stress. Taken together, this study deepened our understanding of transcriptome variation in maize silk and the expression regulation of silk-preferential genes, enhancing the investigation of regulatory networks on metabolic pathways.


Subject(s)
Gene Expression Regulation, Plant , Gene Regulatory Networks , Quantitative Trait Loci , Zea mays , Zea mays/genetics , Zea mays/metabolism , Quantitative Trait Loci/genetics , Gene Expression Regulation, Plant/genetics , Silk/genetics , Genome, Plant/genetics , Gene Expression Profiling , Plant Proteins/genetics , Plant Proteins/metabolism , Transcriptome/genetics
5.
Int J Biol Macromol ; 273(Pt 1): 133010, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38852735

ABSTRACT

Lipids are increasingly being incorporated into delivery systems due to their ability to facilitate intestinal absorption of lipid-soluble nutrients through molecular solubilization and micellization. In this work, self-assembled complexes of ovalbumin (OVA) and nine dietary fatty acids (FAs) were constructed to improve the processability and absorbability of lutein (LUT). Results showed that all FAs could form stable hydrophilic particles with OVA under the optimized ultrasound-coupled pH conditions. Fourier infrared spectroscopy and transmission electron microscopy analysis showed that these binary complexes effectively encapsulated LUT with an encapsulation rate > 90.0 %. Stability experiments showed that these complexes protected LUT well, which could improve thermal stability and in vitro digestive stability by 1.66-3.58-fold and 1.27-2.74-fold, respectively. Besides, the bioaccessibility of LUT was also enhanced by 7.16-24.99-fold. The chain length and saturation of FAs affected the stability and absorption of LUT. Therefore, these results provided some reference for the selection of FAs for efficient delivery of lipid-soluble nutrients.


Subject(s)
Fatty Acids , Lutein , Ovalbumin , Water , Lutein/chemistry , Fatty Acids/chemistry , Ovalbumin/chemistry , Water/chemistry , Digestion , Biological Availability , Solubility , Hydrogen-Ion Concentration , Temperature , Drug Stability , Hydrophobic and Hydrophilic Interactions
6.
J Inorg Biochem ; 259: 112652, 2024 Oct.
Article in English | MEDLINE | ID: mdl-38945112

ABSTRACT

Anticancer activity has been extensively studies. In this article, three ligands 2-(6-bromobenzo[d][1,3]dioxol-5-yl)-1H-imidazo[4,5-f][1,10]phenanthroline (BDIP), 2-(7-methoxybenzo[d][1,3]dioxol-5-yl)-1H-imidazo[4,5-f][1,10]phenanthroline (MDIP), 2-(6-nitrobenzo[d][1,3]dioxol-5-yl)-1H-imidazo[4,5-f][1,10]phenanthroline (NDIP) and their iridium(III) complexes: [Ir(ppy)2(BDIP)](PF6) (ppy = deprotonated 2-phenylpyridine, 3a), [Ir(ppy)2(MDIP)](PF6) (3b) and [Ir(ppy)2(NDIP)](PF6) (3c) were synthesized. The cytotoxicity of 3a, 3b, 3c against Huh7, A549, BEL-7402, HepG2, HeLa, and non-cancer NIH3T3 was tested using 3-(4,5-dimethylthiazole-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) method. The results obtained from the MTT test stated clearly that these complexes demonstrated moderate or non-cytotoxicity toward Huh7, BEL-7402, HepG2 and HeLa except A549 cells. To improve the anticancer efficacy, we used white light to irradiate the mixture of cells and complexes for 30 min, the anticancer activity of the complexes was greatly enhanced. Particularly, 3a and 3b exhibited heightened capability to inhibit A549 cells proliferation with IC50 (half maximal inhibitory concentration) values of 0.7 ± 0.3 µM and 1.8 ± 0.1 µM, respectively. Cellular uptake has shown that 3a and 3b can be accumulated in the cytoplasm. Wound healing and colony forming showed that 3a and 3b significantly hinder the cell migration and growth in the S phase. The complexes open mitochondrial permeability transition pore (MPTP) channel and cause the decrease of membrane potential, release of cytochrome C, activation of caspase 3, and finally lead to apoptosis. In addition, 3a and 3b cause autophagy, increase the lipid peroxidation and lead to ferroptosis. Also, 3a and 3b increase the expression of calreticulin (CRT), high mobility group box 1 (HMGB1), heat shock protein 70 (HSP70), thereby inducing immunogenic cell death.


Subject(s)
Antineoplastic Agents , Coordination Complexes , Iridium , Lung Neoplasms , Iridium/chemistry , Iridium/pharmacology , Humans , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis , Coordination Complexes/pharmacology , Coordination Complexes/chemistry , Coordination Complexes/chemical synthesis , A549 Cells , Lung Neoplasms/drug therapy , Lung Neoplasms/pathology , Lung Neoplasms/metabolism , Apoptosis/drug effects , Light , Animals , Mice , Cell Proliferation/drug effects , NIH 3T3 Cells
7.
Plant Biotechnol J ; 22(9): 2472-2487, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38761386

ABSTRACT

Seed vigour, including rapid, uniform germination and robust seedling establishment under various field conditions, is becoming an increasingly essential agronomic trait for achieving high yield in crops. However, little is known about this important seed quality trait. In this study, we performed a genome-wide association study to identify a key transcription factor ZmRap2.7, which regulates seed vigour through transcriptionally repressing expressions of three ABA signalling genes ZmPYL3, ZmPP2C and ZmABI5 and two phosphatidylethanolamine-binding genes ZCN9 and ZCN10. In addition, ZCN9 and ZCN10 proteins could interact with ZmPYL3, ZmPP2C and ZmABI5 proteins, and loss-of-function of ZmRap2.7 and overexpression of ZCN9 and ZCN10 reduced ABA sensitivity and seed vigour, suggesting a complex regulatory network for regulation of ABA signalling mediated seed vigour. Finally, we showed that four SNPs in ZmRap2.7 coding region influenced its transcriptionally binding activity to the downstream gene promoters. Together with previously identified functional variants within and surrounding ZmRap2.7, we concluded that the distinct allelic variations of ZmRap2.7 were obtained independently during maize domestication and improvement, and responded separately for the diversities of seed vigour, flowering time and brace root development. These results provide novel genes, a new regulatory network and an evolutional mechanism for understanding the molecular mechanism of seed vigour.


Subject(s)
Gene Expression Regulation, Plant , Plant Proteins , Signal Transduction , Zea mays , Abscisic Acid/metabolism , Genome-Wide Association Study , Plant Proteins/genetics , Plant Proteins/metabolism , Polymorphism, Single Nucleotide , Seeds/genetics , Seeds/metabolism , Seeds/growth & development , Transcription Factors/metabolism , Transcription Factors/genetics , Zea mays/genetics , Zea mays/metabolism , Zea mays/growth & development
8.
J Inorg Biochem ; 256: 112549, 2024 07.
Article in English | MEDLINE | ID: mdl-38579631

ABSTRACT

Herein, we synthesized and characterized two novel iridium (III) complexes: [Ir(bzq)2(PPD)](PF6) (4a, with bzq = deprotonated benzo[h]quinoline and PPD = pteridino[6,7-f][1,10]phenanthroline-11,13-diamine) and [Ir(piq)2(PPD)](PF6) (4b, with piq = deprotonated 1-phenylisoquinoline). The anticancer efficacy of these complexes, 4a and 4b, was investigated using 3-(4,5-dimethylthiazole)-2,5-diphenltetraazolium bromide (MTT). Complex 4a exhibited no cytotoxic activity, while 4b demonstrated moderate efficacy against SGC-7901, A549, and HepG2 cancer cells. To enhance their anticancer potential, we explored two strategies: (I) light irradiation and (II) encapsulation of the complexes in liposomes, resulting in the formation of 4alip and 4blip. Both strategies significantly increased the ability of 4a, 4b to kill cancer cells. The cellular studies indicated that both the free complexes 4a, 4b and their liposomal forms 4alip and 4blip effectively inhibited cell proliferation. The cell cycle arrest analysis uncovered 4alip and 4blip arresting cell growth in the S period. Additionally, we investigated apoptosis and ferroptosis pathways, observing an increase in malondialdehyde (MDA) levels, a reduction of glutathione (GSH), a down-regulation of GPX4 (glutathione peroxidase) expression, and lipid peroxidation. The effects on mitochondrial membrane potential and intracellular Ca2+ concentrations were also examined, revealing that both light-activated and liposomal forms of 4alip and 4blip caused a decline in mitochondrial membrane potential and an enhancement in intracellular Ca2+ levels. In conclusion, these complexes and them encapsulated liposomes induce cell death through apoptosis and ferroptosis.


Subject(s)
Antineoplastic Agents , Apoptosis , Coordination Complexes , Iridium , Liposomes , Humans , Iridium/chemistry , Iridium/pharmacology , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Coordination Complexes/pharmacology , Coordination Complexes/chemistry , Coordination Complexes/chemical synthesis , Apoptosis/drug effects , Cell Proliferation/drug effects , Cell Line, Tumor , Membrane Potential, Mitochondrial/drug effects
10.
Food Chem ; 448: 139054, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38552465

ABSTRACT

Quercetin (QUE) sufferred from poor processing adaptability and absorbability, hindering its application as a dietary supplement in the food industry. In this study, fatty acids (FAs)-sodium caseinate (NaCas) ligand complexes carriers were fabricated to improve the aqueous dispersibility, storage/thermal stability, and bioaccessibility of QUE using an ultrasound method. The results indicated that all six selected common dietary FAs formed stable hydrophilic complexes with NaCas and the FAs-NaCas complexes achieved an encapsulation efficiency greater than 90 % for QUE. Furthermore, the introduction of FAs enhanced the binding affinity between NaCas and QUE, but did not change the binding mode (static bursting) and types of intermolecular forces (mainly hydrogen bonding). In addition, a distinct improvement was discovered in the storage stability (>2.37-fold), thermal processing stability (>32.54 %), and bioaccessibility (>2.37-fold) of QUE. Therefore, the FAs-NaCas ligand complexes could effectively protect QUE to minimize degradation as fat-soluble polyphenol delivery vehicles.


Subject(s)
Caseins , Fatty Acids , Quercetin , Quercetin/chemistry , Quercetin/metabolism , Fatty Acids/chemistry , Fatty Acids/metabolism , Caseins/chemistry , Caseins/metabolism , Drug Stability , Biological Availability , Humans , Hydrophobic and Hydrophilic Interactions , Water/chemistry , Dietary Fats/metabolism
11.
Eur J Med Chem ; 268: 116295, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38437750

ABSTRACT

This paper introduces a new ligand, 4,6-dichloro-5-(1H-imidazo [4,5-f]phenanthroline-2-yl)pyrimidin-2-amine (DPPA), and its corresponding new iridium(III) complexes: [Ir(ppy)2(DPPA)](PF6) (2a) (where ppy represents deprotonated 2-phenylpyridine), [Ir(bzq)2(DPPA)](PF6) (2b) (with bzq indicating deprotonated benzo[h]quinoline), and [Ir(piq)2(DPPA)](PF6) (2c) (piq denoting deprotonated 1-phenylisoquinoline). The cytotoxic effects of both DPPA and 2a, 2b, and 2c were evaluated against human lung carcinoma A549, melanoma B16, colorectal cancer HCT116, human hepatocellular carcinoma HepG2 cancer cell lines, as well as the non-cancerous LO2 cell line using the 3-(4,5-dimethylthiazole-2-yl)-2,5-diphenyltetrazolium bromide (MTT) method. While DPPA exhibited moderate anticancer activity toward A549, B16, HCT116 and HepG2 cells, complexes 2a, 2b, and 2c displayed remarkable efficacy against A549, B16, and HCT116 cells. The cell colonies and wound healing were investigated. Moreover, various aspects of the anticancer mechanisms were explored. The cell cycle analyses revealed that the complexes block cell proliferation of A549 cells during the S phase. Complex 2c induce an early apoptosis, while 2a and 2b cause a late apoptosis. The interaction of 2a, 2b and 2c with endoplasmic reticulum and mitochondria was identified, leading to elevated ROS and Ca2+ amounts. This resulted in a reduced mitochondrial membrane potential, mitochondrial permeability transition pore opening, and an increase of cytochrome c. Also, ferroptosis was investigated through measurements of intracellular glutathione (GSH), malondialdehyde (MDA), and recombinant glutathione peroxidase (GPX4) protein expression. The pyroptosis was explored via cell morphology, release of lactate dehydrogenase (LDH) and expression of pyroptosis-related proteins. RNA sequencing was applied to examine the signaling pathways. Western blot analyses illuminated that the complexes regulate the expression of Bcl-2 family proteins. Additionally, an in vivo antitumor study demonstrated that complex 2c exhibited a remarkable inhibitory rate of 58.58% in restraining tumor growth. In summary, the findings collectively suggest that the iridium(III) complexes induce cell death via ferroptosis, apoptosis by a ROS-mediated mitochondrial dysfunction pathway and GSDMD-mediated pyroptosis.


Subject(s)
Antineoplastic Agents , Coordination Complexes , Ferroptosis , Humans , Cell Line, Tumor , Iridium/pharmacology , Pyroptosis , Reactive Oxygen Species/metabolism , Coordination Complexes/pharmacology , Coordination Complexes/metabolism , Apoptosis , Cell Proliferation , Antineoplastic Agents/pharmacology , Antineoplastic Agents/metabolism , Mitochondria
12.
Eur J Med Chem ; 265: 116112, 2024 Feb 05.
Article in English | MEDLINE | ID: mdl-38183779

ABSTRACT

This paper unveils a novel perspective on synthesis and characterization of the ligand 5-bromo-2-amino-2'-(phenyl-1H-imidazo[4,5-f][1,10]phenanthroline) (BAPIP), and its iridium(III) complexes [Ir(PPY-)2(BAPIP)](PF6) (1a, with PPY- as deprotonated 2-phenylpyridine), [Ir(PIQ-)2(BAPIP)](PF6) (1b, piq- denoting deprotonated 1-phenylisoquinoline), and [Ir(BZQ-)2(BAPIP)](PF6) (1c, bzq- signifying deprotonated benzo[h]quinoline). Systematic evaluation of the cytotoxicity of 1a, 1b, and 1c across diverse cell lines encompassing B16, HCT116, HepG2, A549, HeLa, and LO2 using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) method. Unexpectedly, compounds 1b and 1c demonstrated no cytotoxicity against the above cell lines. Motivated by the pursuit of heightened anti-proliferative potential, a strategic encapsulation approach yielded liposomes 1alip, 1blip, and 1clip. As expectation, 1alip, 1blip, and 1clip displayed remarkable anti-proliferative efficacy, particularly noteworthy in A549 cells, exhibiting IC50 values of 4.9 ± 1.0, 5.9 ± 0.1, and 7.6 ± 0.2 µM, respectively. Moreover, our investigation illuminated the mitochondrial accumulation of these liposomal entities, 1alip, 1blip, and 1clip, evoking apoptosis through the mitochondrial dysfunction mediated by reactive oxygen species (ROS). The ferroptosis was confirmed by decrease in glutathione (GSH) concentrations, the downregulation of glutathione peroxidase 4 (GPX4), increase of high mobility group protein 1 (HMGB1), and lipid peroxidation. Simultaneously, pyroptosis as another mode of cell death was undertaken. RNA-sequencing was employed to investigate intricate signalling pathways. In vivo examination provided tangible evidence of 1alip in effectively curbing tumor growth. Collectively, this study provides a multifaceted mode of cellular demise orchestrated by 1a, 1alip, 1blip, and 1clip, involving pathways encompassing apoptosis, ferroptosis, and pyroptosis.


Subject(s)
Antineoplastic Agents , Coordination Complexes , Ferroptosis , Humans , Liposomes , Cell Line, Tumor , Iridium/pharmacology , Gasdermins , Pyroptosis , Cell Proliferation , Apoptosis , Mitochondria/metabolism , Reactive Oxygen Species/metabolism
13.
Eur J Med Chem ; 265: 116078, 2024 Feb 05.
Article in English | MEDLINE | ID: mdl-38141286

ABSTRACT

In this study, ligands 2-phenyl-1H-imidazo[4,5-f][1,10]phenanthroline (PIP), 2-(2-nitrophenyl)-1H-imidazo[4,5-f][1,10]phenanthroline (NPIP), 2-(2-nitronaphthalen-1-yl)-1H-imidazo[4,5-f][1,10]phenanthroline (NNIP) and their iridium(III) metal compounds [Ir(ppy)2(PIP)](PF6) (ppy = 2-phenylpyridine, 1a), [Ir(ppy)2(NPIP)](PF6) (1b), [Ir(ppy)2(NNIP)](PF6) (1c) were designed and synthesized. The anti-cancer activities of 1a, 1b and 1c on BEL-7402, HepG2, SK-Hep1 and non-cancer LO2 were detected using MTT method. 1a shows moderate, 1b and 1c display low or no anti-cancer activities. To elevate the anti-cancer effectiveness, encapsulating the compounds 1a, 1b and 1c into the ordinary or targeted liposomes to produce 1alip, 1blip, 1clip, or targeted 1aTlip, 1bTlip and 1cTlip. The IC50 values of 1alip, 1blip, 1clip, 1aTlip, 1bTlip and 1cTlip against HepG2 cells are 7.9 ± 0.1, 8.6 ± 0.2, 16.9 ± 0.5, 5.9 ± 0.2, 7.3 ± 0.1 and 9.7 ± 0.7 µM, respectively. Specifically, the anti-tumor activity assays in vivo found that the inhibitory rates are 23.24 % for 1a, 61.27 % for 1alip, 76.06 % for 1aTlip. It is obvious that the targeted liposomes entrapped iridium(III) compound greatly enhance anti-cancer efficacy. Additionally, 1alip, 1blip and 1clip or targeted 1aTlip, 1bTlip and 1cTlip can effectively restrain the cell colony and proliferation in the G0/G1 period. 1alip, 1blip, 1clip, 1aTlip, 1bTlip and 1cTlip can increase reactive oxygen species (ROS) concentration, arouse a decline in the mitochondrial membrane potential and promote Ca2+ release. RNA-sequence was applied to examine the signaling pathways. Taken together, the liposomes or targeted liposomes encapsulated compounds trigger cell death by way of apoptosis, autophagy, ferroptosis, disruption of mitochondrial function and PI3K/AKT/mTOR signaling pathways.


Subject(s)
Antineoplastic Agents , Coordination Complexes , Ferroptosis , Inositol Phosphates , Humans , Hep G2 Cells , Liposomes , Cell Line, Tumor , Iridium/pharmacology , Cell Cycle Checkpoints , Cell Proliferation , Phenanthrolines/pharmacology , Phosphatidylinositol 3-Kinases/pharmacology , Coordination Complexes/pharmacology , Antineoplastic Agents/pharmacology , Apoptosis , Reactive Oxygen Species/metabolism
14.
Tohoku J Exp Med ; 262(3): 181-189, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38123303

ABSTRACT

Some studies have investigated the role of cholesterol in the progression of colorectal cancer (CRC). However, the underlying mechanism of action is not clear. In this study, we used bioinformatics tools to elucidate the molecular mechanisms involved. We initially obtained CRC datasets from the Gene Expression Omnibus (GEO) database and hypercholesterolemia data from GeneCards and DisGeNE. Common differentially expressed genes (DEGs) were determined by using Venn diagram web tools. Next, we performed Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses using the Database for Annotation, Visualization, and Integrated Discovery (DAVID). The hub gene was identified through common expression pattern analysis and survival analysis. Finally, we conducted an immune regulatory point analysis and predicted target drugs based on the hub gene. The results of our analysis revealed 13 common DEGs, with endothelin receptor type A (EDNRA) identified as the hub gene linking hypercholesterolemia and CRC. The results of the GO analysis showed that the common DEGs were primarily associated with the G-protein coupled receptor signaling pathway, extracellular space, and receptor binding. The results of the KEGG pathway enrichment analysis indicated enrichment in pathways related to cancer and the phospholipase D signaling pathway. Additionally, we identified potential target drugs, including Podocarpus montanus, Diospyros kaki, Herba Salviae japoniae, sitaxentan, and ambrisentan. We found that EDNRA might be an underlying biomarker for both hypercholesterolemia and CRC. The predicted target drugs provide new strategies for treating CRC.


Subject(s)
Colorectal Neoplasms , Hypercholesterolemia , Humans , Protein Interaction Maps/genetics , Gene Expression Profiling/methods , Hypercholesterolemia/complications , Hypercholesterolemia/genetics , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Colorectal Neoplasms/genetics , Computational Biology/methods
15.
Nucleic Acids Res ; 51(15): 7832-7850, 2023 08 25.
Article in English | MEDLINE | ID: mdl-37403778

ABSTRACT

Maize (Zea mays) kernel size is an important factor determining grain yield; although numerous genes regulate kernel development, the roles of RNA polymerases in this process are largely unclear. Here, we characterized the defective kernel 701 (dek701) mutant that displays delayed endosperm development but normal vegetative growth and flowering transition, compared to its wild type. We cloned Dek701, which encoded ZmRPABC5b, a common subunit to RNA polymerases I, II and III. Loss-of-function mutation of Dek701 impaired the function of all three RNA polymerases and altered the transcription of genes related to RNA biosynthesis, phytohormone response and starch accumulation. Consistent with this observation, loss-of-function mutation of Dek701 affected cell proliferation and phytohormone homeostasis in maize endosperm. Dek701 was transcriptionally regulated in the endosperm by the transcription factor Opaque2 through binding to the GCN4 motif within the Dek701 promoter, which was subjected to strong artificial selection during maize domestication. Further investigation revealed that DEK701 interacts with the other common RNA polymerase subunit ZmRPABC2. The results of this study provide substantial insight into the Opaque2-ZmRPABC5b transcriptional regulatory network as a central hub for regulating endosperm development in maize.


Subject(s)
DNA-Directed RNA Polymerases , Endosperm , Zea mays , DNA-Directed RNA Polymerases/genetics , DNA-Directed RNA Polymerases/metabolism , Endosperm/genetics , Endosperm/growth & development , Gene Expression Regulation, Plant , Plant Growth Regulators/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Zea mays/genetics , Zea mays/metabolism
16.
J Inorg Biochem ; 247: 112329, 2023 10.
Article in English | MEDLINE | ID: mdl-37478780

ABSTRACT

In recent years, the studies of the ruthenium(II) complexes on anticancer activity have been paid great attention, many Ru(II) complexes possess high anticancer efficiency. In this paper, three ligands CPIP (2-(4-chlorophenyl)-1H-imidazo[4,5-f][1,10]phenanthroline), DCPIP (2-(3,4-dichlorophenyl)-1H-imidazo[4,5-f][1,10]phenanthroline), TCPIP (2-(2,3,5-trichlorophenyl)-1H-imidazo[4,5-f][1,10]phenanthroline) and their three ruthenium (II) complexes [Ru(dip)2(CPIP)](PF6)2 (1, dip = 4,7-diphenyl-1,10-phenanthroline), [Ru(dip)2(DCPIP)](PF6)2 (2) and [Ru(dip)2(TCPIP)](PF6)2 (3) were synthesized and characterized. 3-(4,5-dimethylthiazole-2-yl)-2,5-biphenyl tetrazolium bromide (MTT) assay was used to investigate in vitro cytotoxicity of complexes against various cancer cells. The results showed that complexes 1-3 exhibited pronounced cytotoxic effect on B16 cells with low IC50 values of 7.2 ± 0.1, 11.7 ± 0.6 and 1.2 ± 0.2 µM, respectively. The 3D model demonstrated that the complexes can validly prevent the cell proliferation. Apoptosis determined using Annexin V-FITC/PI double staining revealed that complexes 1-3 can effectively induce apoptosis in B16 cells. The intracellular localization of 1-3 in the mitochondria, the levels of intracellular reactive oxygen species (ROS), the opening of mitochondrial permeability transition pore as well as the decline of mitochondrial membrane potential were investigated, which demonstrated that the complexes 1-3 led to apoptosis via a ROS-mediated mitochondrial dysfunction pathway. The RNA-sequence indicated that the complexes upregulate the expression of 74 genes and downregulate the expression of 81 genes. The molecular docking showed that the complexes interact with the proteins through hydrogen bond, π-cation and π-π interaction. The results show that ruthenium(II) complexes 1, 2 and 3 can block tumor cell growth and induce cell death through autophagy and ROS-mediated mitochondrial dysfunction pathways.


Subject(s)
Antineoplastic Agents , Coordination Complexes , Neoplasms , Ruthenium , Humans , Ruthenium/pharmacology , Ruthenium/chemistry , Molecular Docking Simulation , Reactive Oxygen Species/metabolism , Phenanthrolines/pharmacology , Antineoplastic Agents/chemistry , Apoptosis , RNA , Coordination Complexes/chemistry , Cell Line, Tumor
17.
Eur J Med Chem ; 257: 115541, 2023 Sep 05.
Article in English | MEDLINE | ID: mdl-37295162

ABSTRACT

Two polypyridyl ruthenium(II) complexes [Ru(DIP)2(BIP)](PF6)2 (DIP = 4,7-diphenyl-1,10-phenanthrolie, BIP = 2-(1,1'-biphenyl-4-yl)-1H-imidazo[4,5-f][1,10]phenanthroline, Ru1) and [Ru(DIP)2(CBIP)](PF6)2 (CBIP = 2-(4'-chloro-1,1'-biphenyl-4-yl)-1H-imidazo[4,5-f][1,10]phenanthroline, Ru2) were synthesized. The cytotoxic activities in vitro of Ru1, Ru2 toward B16, A549, HepG2, SGC-7901, HeLa, BEL-7402, non-cancer LO2 were investigated using MTT method (3-(4,5-dimethylthiazole)-2,5-diphenltetraazolium bromide). Unexpectedly, Ru1, Ru2 can't prevent these cancer cells proliferation. To improve the anti-cancer effect, we used liposomes to entrap the complexes Ru1, Ru2 to form Ru1lipo, Ru2lipo. As expectation, Ru1lipo and Ru2lipo exhibit high anti-cancer efficacy, especially, Ru1lipo (IC50 3.4 ± 0.1 µM), Ru2lipo (IC50 3.5 ± 0.1 µM) display strong ability to block the cell proliferation in SGC-7901. The cell colony, wound healing, and cell cycle distribution show that the complexes can validly inhibit the cell growth at G2/M phase. Apoptotic studied with Annex V/PI doubling method showed that Ru1lipo and Ru2lipo can effectively induce apoptosis. Reactive oxygen species (ROS), malondialdehyde, glutathione and GPX4 demonstrate that Ru1lipo and Ru2lipo improve ROS and malondialdehyde levels, inhibit generation of glutathione, and finally result in a ferroptosis. Ru1lipo and Ru2lipo interact on the lysosomes and mitochondria and damage mitochondrial dysfunction. Additionally, Ru1lipo and Ru2lipo increase intracellular Ca2+ concentration and induce autophagy. The RNA-sequence and molecular docking were performed, the expression of Bcl-2 family was investigated by Western blot analysis. Antitumor in vivo experiments confirm that 1.23 mg/kg, 2.46 mg/kg of Ru1lipo possesses a high inhibitory rate of 53.53% and 72.90% to prevent tumor growth, hematoxylin-eosin (H&E) results show that Ru1lipo doesn't cause chronic organ damage and strongly promotes the necrosis of solid tumor. Taken together, we conclude that Ru1lipo and Ru2lipo cause cell death through the following pathways: autophagy, ferroptosis, ROS-regulated mitochondrial dysfunction, and blocking the PI3K/AKT/mTOR.


Subject(s)
Antineoplastic Agents , Coordination Complexes , Ruthenium , Humans , Ruthenium/pharmacology , Liposomes , Reactive Oxygen Species/metabolism , Molecular Docking Simulation , Phenanthrolines/pharmacology , Phosphatidylinositol 3-Kinases/pharmacology , Antineoplastic Agents/pharmacology , Cell Proliferation , Apoptosis , Coordination Complexes/pharmacology , Cell Line, Tumor
18.
Plant Cell ; 35(8): 2736-2749, 2023 08 02.
Article in English | MEDLINE | ID: mdl-37233025

ABSTRACT

Understanding gene regulatory networks is essential to elucidate developmental processes and environmental responses. Here, we studied regulation of a maize (Zea mays) transcription factor gene using designer transcription activator-like effectors (dTALes), which are synthetic Type III TALes of the bacterial genus Xanthomonas and serve as inducers of disease susceptibility gene transcription in host cells. The maize pathogen Xanthomonas vasicola pv. vasculorum was used to introduce 2 independent dTALes into maize cells to induced expression of the gene glossy3 (gl3), which encodes a MYB transcription factor involved in biosynthesis of cuticular wax. RNA-seq analysis of leaf samples identified, in addition to gl3, 146 genes altered in expression by the 2 dTALes. Nine of the 10 genes known to be involved in cuticular wax biosynthesis were upregulated by at least 1 of the 2 dTALes. A gene previously unknown to be associated with gl3, Zm00001d017418, which encodes aldehyde dehydrogenase, was also expressed in a dTALe-dependent manner. A chemically induced mutant and a CRISPR-Cas9 mutant of Zm00001d017418 both exhibited glossy leaf phenotypes, indicating that Zm00001d017418 is involved in biosynthesis of cuticular waxes. Bacterial protein delivery of dTALes proved to be a straightforward and practical approach for the analysis and discovery of pathway-specific genes in maize.


Subject(s)
Transcription Factors , Zea mays , Zea mays/genetics , Zea mays/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Transcriptional Activation , Bacteria/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Gene Expression Regulation, Plant/genetics , Waxes/metabolism
19.
J Biol Inorg Chem ; 28(4): 421-437, 2023 06.
Article in English | MEDLINE | ID: mdl-37097484

ABSTRACT

A new ligand DFIP (2-(dibenzo[b,d]furan-3-yl)-1H-imidazo[4,5-f][1,10]phenanthroline) and its two complexes iridium(III) [Ir(ppy)2(DFIP)](PF6) (ppy = 2-phenylpyridine, Ir1) and ruthenium(II) [Ru(bpy)2(DFIP)](PF6)2 (bpy = 2,2'-bipyridine, Ru1) were synthesized and characterized. The anticancer effects of the two complexes on A549, BEL-7402, HepG2, SGC-7901, HCT116 and normal LO2 cells were tested by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) method. Complex Ir1 shows high cytotoxic activity on A549, BEL-7402, SGC-7901 and HepG2, Ru1 exhibits moderate anticancer activity toward A549, BEL-7402 and SGC-7901 cells. The IC50 values of Ir1 and Ru1 toward A549 are 7.2 ± 0.1 and 22.6 ± 1.4 µM, respectively. The localization of complexes Ir1 and Ru1 in the mitochondrial, intracellular accumulation of reactive oxygen species (ROS) levels, and the changes of mitochondrial membrane potential (MMP) and cytochrome c (cyto-c) were investigated. Apoptosis and cell cycle were detected by flow cytometry. Immunogenic cell death (ICD) was used to detect the effects of Ir1 and Ru1 on the A549 using a confocal laser scanning microscope. The expression of apoptosis-related proteins was detected by western blotting. Ir1 and Ru1 can increase the intracellular ROS levels and release cyto-c, reduce the MMP, leading to the apoptosis of A549 cells and blocking the A549 cells at the G0/G1 phase. Additionally, the complexes caused a decrease of the expression of polyADP-ribose polymerase (PARP), caspase 3, Bcl-2 (B-cell lymphoma-2), PI3K (phosphoinositide-3 kinase) and upregulated the expression of Bax. All these findings indicated that the complexes exert anticancer efficacy to induce cell death through immunogenic cell death, apoptosis, and autophagy.


Subject(s)
Antineoplastic Agents , Coordination Complexes , Ruthenium , Humans , A549 Cells , Cell Line, Tumor , Ruthenium/pharmacology , Ruthenium/chemistry , Iridium/pharmacology , Iridium/chemistry , Reactive Oxygen Species/metabolism , Apoptosis , Antineoplastic Agents/chemistry , Coordination Complexes/chemistry , Cell Proliferation
20.
Molecules ; 28(7)2023 Apr 02.
Article in English | MEDLINE | ID: mdl-37049928

ABSTRACT

In this paper, a series of glycyrrhetic acid derivatives 3a-3f were synthesized via the esterification reaction. The cytotoxicity of these compounds against five tumor cells (SGC-7901, BEL-7402, A549, HeLa and B16) and normal LO2 cells was investigated using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) method. The results showed that compound 3a exhibited high antiproliferative activity against HeLa cells (IC50 = 11.4 ± 0.2 µM). The anticancer activity was studied through apoptosis, cloning, and scratching; the levels of the intracellular ROS, GSH, and Ca2+; and the change in the mitochondrial membrane potential, cell cycle arrest and RNA sequencing. Furthermore, the effects of compound 3a on gene expression levels and metabolic pathways in HeLa cells were investigated via transcriptomics. The experimental results showed that this compound can block the cell cycle in the S phase and inhibit cell migration by downregulating Focal adhesion kinase (FAK) expression. Moreover, the compound can reduce the intracellular glutathione (GSH) content, increase the Ca2+ level and the intracellular ROS content, and induce a decrease in the mitochondrial membrane potential, further leading to cell death. In addition, it was also found that the mechanism of compounds inducing apoptosis was related to the regulation of the expression of mitochondria-related proteins B-cell lymphoma-2 (Bcl-2), Bcl-2-Associated X (Bax), and the activation of the caspase proteins. Taken together, this work provides a help for the development of glycyrrhetinic acid compounds as potential anticancer molecules.


Subject(s)
Antineoplastic Agents , Glycyrrhetinic Acid , Humans , HeLa Cells , Cell Line, Tumor , Glycyrrhetinic Acid/pharmacology , Reactive Oxygen Species/metabolism , Cell Proliferation , Antineoplastic Agents/pharmacology , Drug Screening Assays, Antitumor , Apoptosis , Proto-Oncogene Proteins c-bcl-2/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL