Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 157
Filter
1.
Mov Disord ; 2024 Aug 05.
Article in English | MEDLINE | ID: mdl-39101272

ABSTRACT

BACKGROUND: Clinical trial scenarios can be modeled using data from observational studies, providing critical information for design of real-world trials. The Huntington's Disease Integrated Staging System (HD-ISS) characterizes disease progression over an individual's lifespan and allows for flexibility in the design of trials with the goal of delaying progression. Enrichment methods can be applied to the HD-ISS to identify subgroups requiring smaller estimated sample sizes. OBJECTIVE: Investigate time to the event of functional decline (HD-ISS Stage 3) as an endpoint for trials in HD and present sample size estimates after enrichment. METHODS: We classified individuals from observational studies according to the HD-ISS. We assessed the ability of the prognostic index normed (PIN) and its components to predict time to HD-ISS Stage 3. For enrichment, we formed groups from deciles of the baseline PIN distribution for HD-ISS Stage 2 participants. We selected enrichment subgroups closer to Stage 3 transition and estimated sample sizes, using delay in the transition time as the effect size. RESULTS: In predicting time to HD-ISS Stage 3, PIN outperforms its components. Survival curves for each PIN decile show that groups with PIN from 1.48 to 2.74 have median time to Stage 3 of approximately 2 years and these are combined to create enrichment subgroups. Sample size estimates are presented by enrichment subgroup. CONCLUSIONS: PIN is predictive of functional decline. A delay of 9 months or more in the transition to Stage 3 for an enriched sample yields feasible sample size estimates, demonstrating that this approach can aid in planning future trials. © 2024 The Author(s). Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.

2.
Contemp Clin Trials ; : 107647, 2024 Jul 31.
Article in English | MEDLINE | ID: mdl-39095013

ABSTRACT

Despite evidence that aerobic exercise benefits the aging brain, in particular the hippocampus and memory, controlled clinical trials have not comprehensively evaluated effects of aerobic exercise training on human memory in older adults. The central goal of this study was to determine chronic effects of moderate-to-vigorous intensity aerobic exercise on the hippocampus and memory in non-demented, inactive adults ages 55-80 years. We determine effects of aerobic exercise training with a 6-month randomized controlled trial (RCT) comparing 150 min/week of home-based, light intensity exercise with progressive moderate-to-vigorous intensity aerobic exercise. For the first time in a large trial, we examined temporal mechanisms by determining if individual differences in the rapid, immediate effects of moderate intensity exercise on hippocampal-cortical connectivity predict chronic training-related changes over months in connectivity and memory. We examined physiological mechanisms by testing the extent to which chronic training-related changes in cardiorespiratory fitness are a critical factor to memory benefits. The Exercise Effects on Brain Connectivity and Learning from Minutes to Months (Brain-EXTEND) trial is conceptually innovative with advanced measures of hippocampal-dependent learning and memory processes combined with novel capture of the physiological changes, genetic components, and molecular changes induced by aerobic exercise that change hippocampal-cortical connectivity. Given that hippocampal connectivity deteriorates with Alzheimer's and aerobic exercise may contribute to reduced risk of Alzheimer's, our results could lead to an understanding of the physiological mechanisms and moderators by which aerobic exercise reduces risk of this devastating and costly disease.

3.
bioRxiv ; 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38948755

ABSTRACT

Huntington's disease (HD), due to expansion of a CAG repeat in HTT , is representative of a growing number of disorders involving somatically unstable short tandem repeats. We find that overlapping and distinct genetic modifiers of clinical landmarks and somatic expansion in blood DNA reveal an underlying complexity and cell-type specificity to the mismatch repair-related processes that influence disease timing. Differential capture of non-DNA-repair gene modifiers by multiple measures of cognitive and motor dysfunction argues additionally for cell-type specificity of pathogenic processes. Beyond trans modifiers, differential effects are also illustrated at HTT by a 5'-UTR variant that promotes somatic expansion in blood without influencing clinical HD, while, even after correcting for uninterrupted CAG length, a synonymous sequence change at the end of the CAG repeat dramatically hastens onset of motor signs without increasing somatic expansion. Our findings are directly relevant to therapeutic suppression of somatic expansion in HD and related disorders and provide a route to define the individual neuronal cell types that contribute to different HD clinical phenotypes.

4.
Proc Natl Acad Sci U S A ; 121(16): e2322924121, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38607933

ABSTRACT

Many Mendelian disorders, such as Huntington's disease (HD) and spinocerebellar ataxias, arise from expansions of CAG trinucleotide repeats. Despite the clear genetic causes, additional genetic factors may influence the rate of those monogenic disorders. Notably, genome-wide association studies discovered somewhat expected modifiers, particularly mismatch repair genes involved in the CAG repeat instability, impacting age at onset of HD. Strikingly, FAN1, previously unrelated to repeat instability, produced the strongest HD modification signals. Diverse FAN1 haplotypes independently modify HD, with rare genetic variants diminishing DNA binding or nuclease activity of the FAN1 protein, hastening HD onset. However, the mechanism behind the frequent and the most significant onset-delaying FAN1 haplotype lacking missense variations has remained elusive. Here, we illustrated that a microRNA acting on 3'-UTR (untranslated region) SNP rs3512, rather than transcriptional regulation, is responsible for the significant FAN1 expression quantitative trait loci signal and allelic imbalance in FAN1 messenger ribonucleic acid (mRNA), accounting for the most significant and frequent onset-delaying modifier haplotype in HD. Specifically, miR-124-3p selectively targets the reference allele at rs3512, diminishing the stability of FAN1 mRNA harboring that allele and consequently reducing its levels. Subsequent validation analyses, including the use of antagomir and 3'-UTR reporter vectors with swapped alleles, confirmed the specificity of miR-124-3p at rs3512. Together, these findings indicate that the alternative allele at rs3512 renders the FAN1 mRNA less susceptible to miR-124-3p-mediated posttranscriptional regulation, resulting in increased FAN1 levels and a subsequent delay in HD onset by mitigating CAG repeat instability.


Subject(s)
Huntington Disease , MicroRNAs , Humans , 3' Untranslated Regions/genetics , Endodeoxyribonucleases , Exodeoxyribonucleases/genetics , Genome-Wide Association Study , Huntington Disease/genetics , MicroRNAs/genetics , Multifunctional Enzymes
5.
Brain Commun ; 6(2): fcae016, 2024.
Article in English | MEDLINE | ID: mdl-38449714

ABSTRACT

Expansions of glutamine-coding CAG trinucleotide repeats cause a number of neurodegenerative diseases, including Huntington's disease and several of spinocerebellar ataxias. In general, age-at-onset of the polyglutamine diseases is inversely correlated with the size of the respective inherited expanded CAG repeat. Expanded CAG repeats are also somatically unstable in certain tissues, and age-at-onset of Huntington's disease corrected for individual HTT CAG repeat length (i.e. residual age-at-onset), is modified by repeat instability-related DNA maintenance/repair genes as demonstrated by recent genome-wide association studies. Modification of one polyglutamine disease (e.g. Huntington's disease) by the repeat length of another (e.g. ATXN3, CAG expansions in which cause spinocerebellar ataxia 3) has also been hypothesized. Consequently, we determined whether age-at-onset in Huntington's disease is modified by the CAG repeats of other polyglutamine disease genes. We found that the CAG measured repeat sizes of other polyglutamine disease genes that were polymorphic in Huntington's disease participants but did not influence Huntington's disease age-at-onset. Additional analysis focusing specifically on ATXN3 in a larger sample set (n = 1388) confirmed the lack of association between Huntington's disease residual age-at-onset and ATXN3 CAG repeat length. Additionally, neither our Huntington's disease onset modifier genome-wide association studies single nucleotide polymorphism data nor imputed short tandem repeat data supported the involvement of other polyglutamine disease genes in modifying Huntington's disease. By contrast, our genome-wide association studies based on imputed short tandem repeats revealed significant modification signals for other genomic regions. Together, our short tandem repeat genome-wide association studies show that modification of Huntington's disease is associated with short tandem repeats that do not involve other polyglutamine disease-causing genes, refining the landscape of Huntington's disease modification and highlighting the importance of rigorous data analysis, especially in genetic studies testing candidate modifiers.

6.
Epigenetics ; 19(1): 2298057, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38166538

ABSTRACT

Currently, clinicians use their judgement and indices such as the Prediction of Alcohol Withdrawal Syndrome Scale (PAWSS) to determine whether patients are admitted to hospitals for consideration of withdrawal syndrome (AWS). However, only a fraction of those admitted will experience severe AWS. Previously, we and others have shown that epigenetic indices, such as the Alcohol T-Score (ATS), can quantify recent alcohol consumption. However, whether these or other alcohol biomarkers, such as carbohydrate deficient transferrin (CDT), could identify those at risk for severe AWS is unknown. To determine this, we first conducted genome-wide DNA methylation analyses of subjects entering and exiting alcohol treatment to identify loci whose methylation quickly reverted as a function of abstinence. We then tested whether methylation at a rapidly reverting locus, cg07375256, or other existing metrics including PAWSS scores, CDT levels, or ATS, could predict outcome in 125 subjects admitted for consideration of AWS. We found that PAWSS did not significantly predict severe AWS nor seizures. However, methylation at cg07375256 (ZSCAN25) and CDT strongly predicted severe AWS with ATS (p < 0.007) and cg07375256 (p < 6 × 10-5) methylation also predicting AWS associated seizures. We conclude that epigenetic methods can predict those likely to experience severe AWS and that the use of these or similar Precision Epigenetic approaches could better guide AWS management.


Subject(s)
Alcoholism , Substance Withdrawal Syndrome , Humans , Alcoholism/genetics , DNA Methylation , Ethanol , Seizures/genetics , Substance Withdrawal Syndrome/genetics , Zinc Fingers
8.
J Affect Disord ; 340: 269-279, 2023 11 01.
Article in English | MEDLINE | ID: mdl-37562560

ABSTRACT

BACKGROUND: The neural underpinnings of bipolar disorder (BD) remain poorly understood. The cerebellum is ideally positioned to modulate emotional regulation circuitry yet has been understudied in BD. Literature suggests differences in cerebellar activity and metabolism in BD, however findings on structural differences remain contradictory. Potential reasons include combining BD subtypes, small sample sizes, and potential moderators such as genetics, adverse childhood experiences (ACEs), and pharmacotherapy. METHODS: We collected 3 T MRI scans from participants with (N = 131) and without (N = 81) BD type I, as well as blood and questionnaires. We assessed differences in cerebellar volumes and explored potentially influential factors. RESULTS: The cerebellar cortex was smaller bilaterally in participants with BD. Polygenic propensity score did not predict any cerebellar volumes, suggesting that non-genetic factors may have greater influence on the cerebellar volume difference we observed in BD. Proportionate cerebellar white matter volumes appeared larger with more ACEs, but this may result from reduced ICV. Time from onset and symptom burden were not associated with cerebellar volumes. Finally, taking sedatives was associated with larger cerebellar white matter and non-significantly larger cortical volume. LIMITATIONS: This study was cross-sectional, limiting interpretation of possible mechanisms. Most of our participants were White, which could limit the generalizability. Additionally, we did not account for potential polypharmacy interactions. CONCLUSIONS: These findings suggest that external factors, such as sedatives and childhood experiences, may influence cerebellum structure in BD and may mask underlying differences. Accounting for such variables may be critical for consistent findings in future studies.


Subject(s)
Bipolar Disorder , Humans , Bipolar Disorder/psychology , Cross-Sectional Studies , Cerebellum/diagnostic imaging , Magnetic Resonance Imaging , Cerebellar Cortex
9.
Neuromuscul Disord ; 33(8): 660-669, 2023 08.
Article in English | MEDLINE | ID: mdl-37419717

ABSTRACT

Myotonic dystrophy type 1 is characterized by neuromuscular degeneration. Our objective was to compare change in white matter microstructure (fractional anisotropy, radial and axial diffusivity), and functional/clinical measures. Participants underwent yearly neuroimaging and neurocognitive assessments over three-years. Assessments encompassed full-scale intelligence, memory, language, visuospatial skills, attention, processing speed, and executive function, as well as clinical symptoms of muscle/motor function, apathy, and hypersomnolence. Mixed effects models were used to examine differences. 69 healthy adults (66.2% women) and 41 DM1 patients (70.7% women) provided 156 and 90 observations, respectively. There was a group by elapsed time interaction for cerebral white matter, where DM1 patients exhibited declines in white matter (all p<0.05). Likewise, DM1 patients either declined (motor), improved more slowly (intelligence), or remained stable (executive function) for functional outcomes. White matter was associated with functional performance; intelligence was predicted by axial (r = 0.832; p<0.01) and radial diffusivity (r = 0.291, p<0.05), and executive function was associated with anisotropy (r = 0.416, p<0.001), and diffusivity (axial: r = 0.237, p = 0.05 and radial: r = 0.300, p<0.05). Indices of white matter health are sensitive to progression in DM1. These results are important for clinical trial design, which utilize short intervals to establish treatment efficacy.


Subject(s)
Myotonic Dystrophy , White Matter , Humans , Adult , Female , Male , Diffusion Tensor Imaging , White Matter/diagnostic imaging , Myotonic Dystrophy/complications , Executive Function , Anisotropy , Brain/diagnostic imaging
10.
Front Psychiatry ; 14: 1147540, 2023.
Article in English | MEDLINE | ID: mdl-37215681

ABSTRACT

Purpose: Studies of the neural underpinnings of bipolar type I disorder have focused on the emotional control network. However, there is also growing evidence for cerebellar involvement, including abnormal structure, function, and metabolism. Here, we sought to assess functional connectivity of the cerebellar vermis with the cerebrum in bipolar disorder and to assess whether connectivity might depend on mood. Methods: This cross-sectional study enrolled 128 participants with bipolar type I disorder and 83 control comparison participants who completed a 3 T magnetic resonance imaging (MRI) study, which included anatomical as well as resting state Blood Oxygenation Level Dependent (BOLD) imaging. Functional connectivity of the cerebellar vermis to all other brain regions was assessed. Based on quality control metrics of the fMRI data, 109 participants with bipolar disorder and 79 controls were included in the statistical analysis comparing connectivity of the vermis. In addition, the data was explored for the potential impacts of mood, symptom burden, and medication in those with bipolar disorder. Results: Functional connectivity between the cerebellar vermis and the cerebrum was found to be aberrant in bipolar disorder. The connectivity of the vermis was found to be greater in bipolar disorder to regions involved in motor control and emotion (trending), while reduced connectivity was observed to a region associated with language production. In the participants with bipolar disorder, past depression symptom burden affected connectivity; however, no effects of medication were observed. Functional connectivity between the cerebellar vermis and all other regions revealed an inverse association with current mood ratings. Conclusion: Together the findings may suggest that the cerebellum plays a compensatory role in bipolar disorder. The proximity of the cerebellar vermis to the skull may make this region a potential target for treatment with transcranial magnetic stimulation.

11.
Mov Disord ; 38(6): 1036-1043, 2023 06.
Article in English | MEDLINE | ID: mdl-37147862

ABSTRACT

BACKGROUND: Minimal clinically important difference (MCID) represents the smallest within-person change on an outcome measure considered meaningful to the patient. Anchor-based MCID methods evaluate the relationship between changes in an outcome measure and the patient-reported clinical importance of that change. OBJECTIVE: This study aims to estimate longitudinal MCID for clinically relevant outcome measures for individuals who have Stages 2 or 3 disease as measured by the Huntington's Disease Integrated Staging System (HD-ISS). METHODS: Data were drawn from Enroll-HD, a large global longitudinal, observational study and clinical research platform for HD family members. We analyzed HD participants (N = 11,070) by staging group using time frames ranging from 12 to 36 months. The anchor was the physical component summary score of the 12-item short-form health survey. HD-relevant motor, cognitive, and functional outcome measures were independent, external criterion outcomes. Complex analysis was conducted using multiple, independent, linear mixed effect regression models with decomposition to calculate MCID for each external criterion by group. RESULTS: MCID estimates varied by progression stage. MCID estimates increased as stage progression increased and as the time frame increased. MCID values for key HD measures are provided. For example, starting in HD-ISS stage 2, meaningful group change over 24 months equals an average increase of 3.6 or more points on the Unified Huntington's Disease Rating Scale Total Motor Score. CONCLUSIONS: This is the first study to examine MCID estimation thresholds for HD. The results can be used to improve clinical interpretation of study outcomes and enable treatment recommendations to support clinical decision-making and clinical trial methodology. © 2023 International Parkinson and Movement Disorder Society.


Subject(s)
Huntington Disease , Humans , Longitudinal Studies
12.
J Huntingtons Dis ; 12(1): 57-69, 2023.
Article in English | MEDLINE | ID: mdl-37092230

ABSTRACT

BACKGROUND: The Huntington's Disease Integrated Staging System (HD-ISS) has four stages that characterize disease progression. Classification is based on CAG length as a marker of Huntington's disease (Stage 0), striatum atrophy as a biomarker of pathogenesis (Stage 1), motor or cognitive deficits as HD signs and symptoms (Stage 2), and functional decline (Stage 3). One issue for implementation is the possibility that not all variables are measured in every study, and another issue is that the stages are broad and may benefit from progression subgrouping. OBJECTIVE: Impute stages of the HD-ISS for observational studies in which missing data precludes direct stage classification, and then define progression subgroups within stages. METHODS: A machine learning algorithm was used to impute stages. Agreement of the imputed stages with the observed stages was evaluated using graphical methods and propensity score matching. Subgroups were defined based on descriptive statistics and optimal cut-point analysis. RESULTS: There was good overall agreement between the observed stages and the imputed stages, but the algorithm tended to over-assign Stage 0 and under-assign Stage 1 for individuals who were early in progression. CONCLUSION: There is evidence that the imputed stages can be treated similarly to the observed stages for large-scale analyses. When imaging data are not available, imputation can be avoided by collapsing the first two stages using the categories of Stage≤1, Stage 2, and Stage 3. Progression subgroups defined within a stage can help to identify groups of more homogeneous individuals.


Subject(s)
Cognition Disorders , Cognitive Dysfunction , Huntington Disease , Humans , Biomarkers , Disease Progression
13.
bioRxiv ; 2023 Feb 06.
Article in English | MEDLINE | ID: mdl-36778335

ABSTRACT

Purpose: Studies of the neural underpinnings of bipolar type I disorder have focused on the emotional control network. However, there is also growing evidence for cerebellar involvement, including abnormal structure, function, and metabolism. Here, we sought to assess functional connectivity of the cerebellum with the cerebrum in bipolar disorder and to assess whether any effects might depend on mood. Methods: This cross-sectional study enrolled 128 participants with bipolar type I disorder and 83 control comparison participants who completed a 3T MRI scan, which included anatomical imaging as well as resting state BOLD imaging. Functional connectivity of the cerebellar vermis to all other brain regions was assessed. Based on quality control metrics of the fMRI data, 109 participants with bipolar disorder and 79 controls were used to in the statistical analysis comparing connectivity of the vermis as well as associations with mood. Potential impacts of medications were also explored. Results: Functional connectivity of the cerebellar vermis in bipolar disorder was found to differ significantly between brain regions known to be involved in the control of emotion, motor function, and language. While connections with emotion and motor control areas were significantly stronger in bipolar disorder, connection to a region associated language production was significantly weaker. In the participants with bipolar disorder, ratings of depression and mania were inversely associated with vermis functional connectivity. No effect of medications on these connections were observed. Conclusion: Together the findings suggest cerebellum may play a compensatory role in bipolar disorder and when it can no longer fulfill this role, depression and mania develop. The proximity of the cerebellar vermis to the skull may make this region a potential target for treatment with transcranial magnetic stimulation.

14.
Neuropsychopharmacology ; 48(5): 806-815, 2023 04.
Article in English | MEDLINE | ID: mdl-36243771

ABSTRACT

Persons at risk for developing alcohol use disorder (AUD) differ in their sensitivity to acute alcohol intoxication. Alcohol effects are complex and thought to depend on multiple mechanisms. Here, we explored whether acid-sensing ion channels (ASICs) might play a role. We tested ASIC function in transfected CHO cells and amygdala principal neurons, and found alcohol potentiated currents mediated by ASIC1A homomeric channels, but not ASIC1A/2 A heteromeric channels. Supporting a role for ASIC1A in the intoxicating effects of alcohol in vivo, we observed marked alcohol-induced changes on local field potentials in basolateral amygdala, which differed significantly in Asic1a-/- mice, particularly in the gamma, delta, and theta frequency ranges. Altered electrophysiological responses to alcohol in mice lacking ASIC1A, were accompanied by changes in multiple behavioral measures. Alcohol administration during amygdala-dependent fear conditioning dramatically diminished context and cue-evoked memory on subsequent days after the alcohol had cleared. There was a significant alcohol by genotype interaction. Context- and cue-evoked memory were notably worse in Asic1a-/- mice. We further examined acute stimulating and sedating effects of alcohol on locomotor activity, loss of righting reflex, and in an acute intoxication severity scale. We found loss of ASIC1A increased the stimulating effects of alcohol and reduced the sedating effects compared to wild-type mice, despite similar blood alcohol levels. Together these observations suggest a novel role for ASIC1A in the acute intoxicating effects of alcohol in mice. They further suggest that ASICs might contribute to intoxicating effects of alcohol and AUD in humans.


Subject(s)
Acid Sensing Ion Channels , Neurons , Cricetinae , Humans , Mice , Animals , Acid Sensing Ion Channels/genetics , Acid Sensing Ion Channels/pharmacology , Cricetulus , Electrophysiological Phenomena , Ethanol/pharmacology
15.
J Neurol Neurosurg Psychiatry ; 94(2): 130-135, 2023 02.
Article in English | MEDLINE | ID: mdl-36450478

ABSTRACT

BACKGROUND AND OBJECTIVES: The clinical diagnosis of Huntington disease (HD) is typically made once motor symptoms and chorea are evident. Recent reports highlight the onset of cognitive and psychiatric symptoms before motor manifestations. These findings support further investigations of cognitive function across the lifespan of HD sufferers. METHODS: To assess cognitive symptoms in the developing brain, we administered assessments from the National Institutes of Health Toolbox Cognitive Battery, an age-appropriate cognitive assessment with population norms, to a cohort of children, adolescents and young adults with (gene-expanded; GE) and without (gene-not-expanded; GNE) the trinucleotide cytosine, adenine, guanine (CAG) expansion in the Huntingtin gene. These five assessments that focus on executive function are well validated and form a composite score, with population norms. We modelled these scores across age, and CAP score to estimate the slope of progression, comparing these results to motor symptoms. RESULTS: We find significant deficits in the composite measure of executive function in GE compared with GNE participants. GE participant performance on working memory was significantly lower compared with GNE participants. Modelling these results over age suggests that these deficits occur as early as 18 years of age, long before motor manifestations of HD. CONCLUSIONS: This work provides strong evidence that impairments in executive function occur as early as the second decade of life, well before anticipated motor onset. Future investigations should delineate whether these impairments in executive function are due to abnormalities in neurodevelopment or early sequelae of a neurodegenerative process.


Subject(s)
Cognition Disorders , Huntington Disease , Adolescent , Child , Young Adult , Humans , Huntington Disease/complications , Huntington Disease/genetics , Executive Function , Cognition Disorders/complications , Brain , Cognition
16.
Hum Brain Mapp ; 44(4): 1417-1431, 2023 03.
Article in English | MEDLINE | ID: mdl-36409662

ABSTRACT

The striatum has traditionally been the focus of Huntington's disease research due to the primary insult to this region and its central role in motor symptoms. Beyond the striatum, evidence of cortical alterations caused by Huntington's disease has surfaced. However, findings are not coherent between studies which have used cortical thickness for Huntington's disease since it is the well-established cortical metric of interest in other diseases. In this study, we propose a more comprehensive approach to cortical morphology in Huntington's disease using cortical thickness, sulcal depth, and local gyrification index. Our results show consistency with prior findings in cortical thickness, including its limitations. Our comparison between cortical thickness and local gyrification index underscores the complementary nature of these two measures-cortical thickness detects changes in the sensorimotor and posterior areas while local gyrification index identifies insular differences. Since local gyrification index and cortical thickness measures detect changes in different regions, the two used in tandem could provide a clinically relevant measure of disease progression. Our findings suggest that differences in insular regions may correspond to earlier neurodegeneration and may provide a complementary cortical measure for detection of subtle early cortical changes due to Huntington's disease.


Subject(s)
Huntington Disease , Neocortex , Humans , Huntington Disease/diagnostic imaging , Cerebral Cortex/diagnostic imaging , Magnetic Resonance Imaging/methods
17.
NPJ Genom Med ; 7(1): 53, 2022 Sep 05.
Article in English | MEDLINE | ID: mdl-36064847

ABSTRACT

Huntington's disease is caused by an expanded CAG tract in HTT. The length of the CAG tract accounts for over half the variance in age at onset of disease, and is influenced by other genetic factors, mostly implicating the DNA maintenance machinery. We examined a single nucleotide variant, rs79727797, on chromosome 5 in the TCERG1 gene, previously reported to be associated with Huntington's disease and a quasi-tandem repeat (QTR) hexamer in exon 4 of TCERG1 with a central pure repeat. We developed a method for calling perfect and imperfect repeats from exome-sequencing data, and tested association between the QTR in TCERG1 and residual age at motor onset (after correcting for the effects of CAG length in the HTT gene) in 610 individuals with Huntington's disease via regression analysis. We found a significant association between age at onset and the sum of the repeat lengths from both alleles of the QTR (p = 2.1 × 10-9), with each added repeat hexamer reducing age at onset by one year (95% confidence interval [0.7, 1.4]). This association explained that previously observed with rs79727797. The association with age at onset in the genome-wide association study is due to a QTR hexamer in TCERG1, translated to a glutamine/alanine tract in the protein. We could not distinguish whether this was due to cis-effects of the hexamer repeat on gene expression or of the encoded glutamine/alanine tract in the protein. These results motivate further study of the mechanisms by which TCERG1 modifies onset of HD.

18.
J Affect Disord ; 311: 538-547, 2022 08 15.
Article in English | MEDLINE | ID: mdl-35654284

ABSTRACT

BACKGROUND: Postpartum depression (PPD) is a serious mental health problem that has a prevalence rate of nearly 20% in the first three months after delivery. The purpose of this study was to evaluate the benefit of Sunnyside, an internet-based cognitive-behavioral intervention, delivered in a group format compared to the same intervention delivered individually for the prevention of PPD. METHOD: 210 people between 20- and 28-weeks gestation and who scored between 5 and 14 on the PHQ-8 and who did not meet criteria for major depression were recruited online. The Inventory of Depression and Anxiety Symptoms (IDAS), the Hamilton Rating Scale for Depression (HAMD), and the depression and anxiety modules of the MINI were obtained at baseline, post-treatment, and 12-weeks postpartum. Intervention adherence was measured by site usage. RESULTS: Across self-report and interview measures of depression there were no significant differences in outcome between the group and the individual versions of the program. Rates of major depression and generalized anxiety disorder in the postpartum period were low and adherence to the conditions was similarly high. Participants in the individual condition were significantly more satisfied than participants in the group condition (p < 0.05). LIMITATIONS: The sample was predominantly white (85%) and recruited online, which may limit generalizability. CONCLUSIONS: The group intervention was not more effective than the individual intervention. However, ignoring groups, many measures improved over time. The results of this study provide evidence that mood symptoms improve when participating in an online preventive intervention for postpartum depression.


Subject(s)
Cognitive Behavioral Therapy , Depression, Postpartum , Internet-Based Intervention , Female , Humans , Anxiety , Cognitive Behavioral Therapy/methods , Depression , Depression, Postpartum/prevention & control , Internet , Treatment Outcome
19.
Lancet Neurol ; 21(7): 632-644, 2022 07.
Article in English | MEDLINE | ID: mdl-35716693

ABSTRACT

The current research paradigm for Huntington's disease is based on participants with overt clinical phenotypes and does not address its pathophysiology nor the biomarker changes that can precede by decades the functional decline. We have generated a new research framework to standardise clinical research and enable interventional studies earlier in the disease course. The Huntington's Disease Integrated Staging System (HD-ISS) comprises a biological research definition and evidence-based staging centred on biological, clinical, and functional assessments. We used a formal consensus method that involved representatives from academia, industry, and non-profit organisations. The HD-ISS characterises individuals for research purposes from birth, starting at Stage 0 (ie, individuals with the Huntington's disease genetic mutation without any detectable pathological change) by using a genetic definition of Huntington's disease. Huntington's disease progression is then marked by measurable indicators of underlying pathophysiology (Stage 1), a detectable clinical phenotype (Stage 2), and then decline in function (Stage 3). Individuals can be precisely classified into stages based on thresholds of stage-specific landmark assessments. We also demonstrated the internal validity of this system. The adoption of the HD-ISS could facilitate the design of clinical trials targeting populations before clinical motor diagnosis and enable data standardisation across ongoing and future studies.


Subject(s)
Huntington Disease , Disease Progression , Humans , Huntington Disease/diagnosis , Huntington Disease/genetics , Longitudinal Studies , Phenotype
20.
Nat Neurosci ; 25(4): 446-457, 2022 04.
Article in English | MEDLINE | ID: mdl-35379994

ABSTRACT

The age at onset of motor symptoms in Huntington's disease (HD) is driven by HTT CAG repeat length but modified by other genes. In this study, we used exome sequencing of 683 patients with HD with extremes of onset or phenotype relative to CAG length to identify rare variants associated with clinical effect. We discovered damaging coding variants in candidate modifier genes identified in previous genome-wide association studies associated with altered HD onset or severity. Variants in FAN1 clustered in its DNA-binding and nuclease domains and were associated predominantly with earlier-onset HD. Nuclease activities of purified variants in vitro correlated with residual age at motor onset of HD. Mutating endogenous FAN1 to a nuclease-inactive form in an induced pluripotent stem cell model of HD led to rates of CAG expansion similar to those observed with complete FAN1 knockout. Together, these data implicate FAN1 nuclease activity in slowing somatic repeat expansion and hence onset of HD.


Subject(s)
Endodeoxyribonucleases , Exodeoxyribonucleases , Huntington Disease , Trinucleotide Repeat Expansion , Age of Onset , Endodeoxyribonucleases/genetics , Endodeoxyribonucleases/metabolism , Exodeoxyribonucleases/genetics , Exodeoxyribonucleases/metabolism , Exome/genetics , Genome-Wide Association Study , Humans , Huntingtin Protein/genetics , Huntington Disease/genetics , Huntington Disease/metabolism , Multifunctional Enzymes/genetics , Multifunctional Enzymes/metabolism , Trinucleotide Repeat Expansion/genetics , Exome Sequencing
SELECTION OF CITATIONS
SEARCH DETAIL