Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters








Database
Language
Publication year range
1.
Int J Mol Sci ; 25(17)2024 Sep 01.
Article in English | MEDLINE | ID: mdl-39273466

ABSTRACT

The Ficus genus, having radiated from the tropics and subtropics to the temperate zone worldwide, is the largest genus among woody plants, comprising over 800 species. Evolution of the Ficus species results in genetic diversity, global radiation and geographical differentiations, suggesting adaption to diverse environments and coping with stresses. Apart from familiar physiological changes, such as stomatal closure and alteration in plant hormone levels, the Ficus species exhibit a unique mechanism in response to abiotic stress, such as regulation of leaf temperature and retention of drought memory. The stress-resistance genes harbored by Ficus result in effective responses to abiotic stress. Understanding the stress-resistance mechanisms in Ficus provides insights into the genetic breeding toward stress-tolerant crop cultivars. Following upon these issues, we comprehensively reviewed recent progress concerning the Ficus genes and relevant mechanisms that play important roles in the abiotic stress responses. These highlight prospectively important application potentials of the stress-resistance genes in Ficus.


Subject(s)
Adaptation, Physiological , Ficus , Stress, Physiological , Ficus/genetics , Ficus/physiology , Stress, Physiological/genetics , Adaptation, Physiological/genetics , Phenotype , Gene Expression Regulation, Plant , Droughts
2.
Pest Manag Sci ; 80(7): 3540-3552, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38446128

ABSTRACT

BACKGROUND: Potatoes, a major economic crop, are significantly impacted by Fusarium dry rot, a prevalent postharvest disease. Despite the broad-spectrum antimicrobial properties of cinnamaldehyde, a naturally-derived plant substance, its efficacy against the causal pathogen of potato dry rot (Fusarium oxysporum) and the underlying mechanisms have not been extensively studied. RESULTS: Our study demonstrates that cinnamaldehyde effectively inhibits the growth of Fusarium oxysporum, the pathogen responsible for potato dry rot, and increases its sensitivity to environmental stress factors such as extreme temperatures and high salt stress. Treatment with cinnamaldehyde results in altered fungal mycelium morphology, compromised cell wall stability, and disrupted cell membrane integrity, thereby reducing spore viability. Specifically, it interferes with the cell membrane and cell wall structures of the fungus, potentially disrupting fungal growth by modulating signaling pathways involved in cell wall maintenance, chitin metabolism, and GPI-anchored protein function. Notably, we show that cinnamaldehyde induces a form of regulated cell death in F. oxysporum, which is characterized not as typical apoptosis, as evidenced by Annexin V negative staining. However, the specific cell death type and underlying mechanism still needed to be further explored. CONCLUSION: Cinnamaldehyde, an environmentally friendly plant-based active compound, exhibits strong inhibitory effects on F. oxysporum, indicating its potential use in the prevention and control strategies for potato dry rot. This research contributes to the understanding of novel antifungal mechanisms and offers promising insights into eco-friendly alternatives for managing this economically significant postharvest disease. © 2024 Society of Chemical Industry.


Subject(s)
Acrolein , Fusarium , Plant Diseases , Solanum tuberosum , Fusarium/drug effects , Fusarium/physiology , Acrolein/analogs & derivatives , Acrolein/pharmacology , Solanum tuberosum/microbiology , Plant Diseases/microbiology , Plant Diseases/prevention & control , Fungicides, Industrial/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL