Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters








Database
Language
Publication year range
1.
Polymers (Basel) ; 14(22)2022 Nov 10.
Article in English | MEDLINE | ID: mdl-36432976

ABSTRACT

Fiber-reinforced polymer composites are largely employed for their improved strength with respect to unfilled matrices. Considering semi-crystalline materials under relevant processing conditions, the applied pressure and flow induce shear stresses at the fiber-polymer interface. These stresses may strongly enhance the nucleation ability of the fiber surface with respect to the quiescent case. It is thus possible to assume that the fiber features are no longer of importance and that crystallization is dominated by the effect of flow. However, by making use of an advanced experimental technique, i.e., polarization-modulated synchrotron infrared microspectroscopy (PM-SIRMS), we are able to show that the opposite is true for the industrially relevant case of isotactic polypropylene (iPP). With PM-SIRMS, the local chain orientation is measured with micron-size spatial resolution. This orientation can be related to the polymer nucleation density along the fiber surface. For various combinations of an iPP matrix and fiber, the degree of orientation in the cylindrical layer that develops during flow correlates well with the differences in nucleation density found in quiescent conditions. This result shows that the morphological development during processing of polymer composites is not solely determined by the flow field, nor by the nucleating ability of the fiber surface alone, but rather by a synergistic combination of the two. In addition, using finite element modeling, it is demonstrated that, under the experimentally applied flow conditions, the interphase structure formation is mostly dominated by the rheological characteristics of the material rather than perturbations in experimental conditions, such as shear rate, layer thickness, and temperature. This once again highlights the importance of matrix-filler interplay during flow and, thus, of material selection in the design of hybrid and lightweight composite technologies.

2.
Polymers (Basel) ; 14(14)2022 Jul 08.
Article in English | MEDLINE | ID: mdl-35890568

ABSTRACT

There has been extensive research in the field of material-extrusion (Mat-Ex) 3D printing to improve the inter-layer bonding process. Much research focusses on how various printing conditions may be detrimental to weld strength; many different feedstocks have been investigated along with various additives to improve strength. Surprisingly, there has been little attention directed toward how fundamental molecular properties of the feedstock, in particular the average molar mass of the polymer, may contribute to microstructure of the weld. Here we showed that weld strength increases with decreasing average molar mass, contrary to common observations in specimens processed in more traditional ways, e.g., by compression molding. Using a combination of synchrotron infra-red polarisation modulation microspectroscopy measurements and continuum modelling, we demonstrated how residual molecular anisotropy in the weld region leads to poor strength and how it can be eradicated by decreasing the relaxation time of the polymer. This is achieved more effectively by reducing the molar mass than by the usual approach of attempting to govern the temperature in this hard to control non-isothermal process. Thus, we propose that molar mass of the polymer feedstock should be considered as a key control parameter for achieving high weld strength in Mat-Ex.

3.
Cryst Growth Des ; 18(7): 3921-3926, 2018 Jul 05.
Article in English | MEDLINE | ID: mdl-29991931

ABSTRACT

Cross-nucleation is defined as the nucleation of one polymorph on the surface of another polymorph of the same substance. Although the description of this particular form of heterogeneous nucleation is mainly phenomenological, recently dedicated quantitative studies are performed on several systems. In this work we propose a model framework that captures the phenomenon of cross-nucleation for a spherulitic seed-surface geometry, as well as the kinetic competition between the seed growth and the cross-nucleus formation, by the introduction of a tangential growth rate of the daughter polymorph. Regardless of the growth rate of the parent spherulite, this model describes the experimental data up to and including the final amount of cross-nuclei on its periphery, solely based on one parameter, the cross-nucleation rate. Furthermore, a strong temperature dependency of the kinetic competition between concomitantly growing α- and ß-phase isotactic polypropylene is observed and related to the previously reported anomalous behavior of this cross-nucleating system.

SELECTION OF CITATIONS
SEARCH DETAIL