Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 86
Filter
Add more filters








Publication year range
1.
Commun Mater ; 5(1): 158, 2024.
Article in English | MEDLINE | ID: mdl-39238825

ABSTRACT

Designing plant protein-based aqueous lubricants can be of great potential to achieve sustainability objectives by capitalising on inherent functional groups without using synthetic chemicals; however, such a concept remains in its infancy. Here, we engineer a class of self-assembled sustainable materials by using plant-based protofilaments and their assembly within a biopolymeric hydrogel giving rise to a distinct patchy architecture. By leveraging physical interactions, this material offers superlubricity with friction coefficients of 0.004-to-0.00007 achieved under moderate-to-high (102-to-103 kPa) contact pressures. Multiscale experimental measurements combined with molecular dynamics simulations reveal an intriguing synergistic mechanism behind such ultra-low friction - where the uncoated areas of the protofilaments glue to the surface by hydrophobic interactions, whilst the hydrogel offers the hydration lubrication. The current approach establishes a robust platform towards unlocking an untapped potential of using plant protein-based building blocks across diverse applications where achieving superlubricity and environmental sustainability are key performance indicators.

2.
Biophys J ; 2024 Sep 26.
Article in English | MEDLINE | ID: mdl-39340152

ABSTRACT

Intrinsically disordered proteins (IDPs) often contain proline residues, which undergo cis/trans isomerisation. While molecular dynamics (MD) simulations have the potential to fully characterise the proline cis and trans sub-ensembles, they are limited by the slow timescales of isomerisation and force field inaccuracies. Nuclear magnetic resonance (NMR) spectroscopy can report on ensemble-averaged observables for both the cis-proline and trans-proline states, but a full atomistic characterisation of these conformers is challenging. Given the importance of proline cis/trans isomerisation for influencing the conformational sampling of disordered proteins, we employed a combination of all-atom MD simulations with enhanced sampling (metadynamics), NMR, and small-angle X-ray scattering (SAXS) to characterise the two sub-ensembles of the ORF6 C-terminal region (ORF6CTR) from SARS-CoV-2 corresponding to the proline-57 (P57) cis and trans states. We performed MD simulations in three distinct force fields: AMBER03ws, AMBER99SB-disp, and CHARMM36m, which are all optimised for disordered proteins. Each simulation was run for an accumulated time of 180-220 µs until convergence was reached, as assessed by blocking analysis. A good agreement between the cis-P57 populations predicted from metadynamic simulations in AMBER03ws was observed with populations obtained from experimental NMR data. Moreover, we observed good agreement between the radius of gyration predicted from the metadynamic simulations in AMBER03ws and that measured using SAXS. Our findings suggest that both the cis-P57 and trans-P57 conformations of ORF6CTR are extremely dynamic and that interdisciplinary approaches combining both multi-scale computations and experiments offer avenues to explore highly dynamic states that cannot be reliably characterised by either approach in isolation.

3.
ACS Omega ; 9(26): 28715-28725, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38973875

ABSTRACT

Alzheimer's disease (AD) is a widespread neurodegenerative condition affecting millions globally. Recent research has implicated variants of the triggering receptor expressed in myeloid cells 2 (TREM2) as risk factors for AD. TREM2, an immunomodulatory receptor on microglial surfaces, plays a pivotal role in regulating microglial activation by association with DNAX-activation protein 12 (DAP12). Despite its significance, the mechanism underlying the formation of the complex between the transmembrane domains (TMDs) of TREM2 and DAP12 remains unclear. This study employs multiscale molecular dynamics (MD) simulations to investigate three TMD complex models, including two derived from experiments and one generated by AlphaFold2. Conducted within a lipid membrane consisting of an 80:20 mixture of phosphatidylcholine (POPC) and cholesterol, our analysis reveals hydrogen-bonding interactions between K26 of TREM2 and D16 of DAP12 in all three models, consistent with previous experimental findings. Our results elucidate the different spatial conformations observed in the models and offer insights into the structure of the TREM2/DAP12 TMD complex. Furthermore, we elucidate the role of charged residues in the assembly structure of the complex within the lipid membrane. These findings enhance our understanding of the molecular mechanism governing TREM2/DAP12 complex formation, providing a foundation for designing novel therapeutic strategies to address AD and other neurodegenerative diseases.

4.
Nat Commun ; 15(1): 4912, 2024 Jun 08.
Article in English | MEDLINE | ID: mdl-38851738

ABSTRACT

Bacterial adhesion is a fundamental process which enables colonisation of niche environments and is key for infection. However, in Legionella pneumophila, the causative agent of Legionnaires' disease, these processes are not well understood. The Legionella collagen-like protein (Lcl) is an extracellular peripheral membrane protein that recognises sulphated glycosaminoglycans on the surface of eukaryotic cells, but also stimulates bacterial aggregation in response to divalent cations. Here we report the crystal structure of the Lcl C-terminal domain (Lcl-CTD) and present a model for intact Lcl. Our data reveal that Lcl-CTD forms an unusual trimer arrangement with a positively charged external surface and negatively charged solvent exposed internal cavity. Through molecular dynamics simulations, we show how the glycosaminoglycan chondroitin-4-sulphate associates with the Lcl-CTD surface via distinct binding modes. Our findings show that Lcl homologs are present across both the Pseudomonadota and Fibrobacterota-Chlorobiota-Bacteroidota phyla and suggest that Lcl may represent a versatile carbohydrate-binding mechanism.


Subject(s)
Bacterial Proteins , Collagen , Glycosaminoglycans , Legionella pneumophila , Molecular Dynamics Simulation , Protein Binding , Glycosaminoglycans/metabolism , Glycosaminoglycans/chemistry , Bacterial Proteins/metabolism , Bacterial Proteins/chemistry , Legionella pneumophila/metabolism , Collagen/metabolism , Collagen/chemistry , Crystallography, X-Ray , Chondroitin Sulfates/metabolism , Chondroitin Sulfates/chemistry , Bacterial Adhesion , Protein Domains , Legionnaires' Disease/microbiology , Legionnaires' Disease/metabolism , Humans , Amino Acid Sequence
5.
ACS Omega ; 9(13): 15556-15572, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38585074

ABSTRACT

WHO has identified several Candida species including Candida albicans as critical priority fungal pathogens due to greater infection prevalence and formation of recalcitrant biofilms. Novel antifungal agents are urgently needed, and antimicrobial peptides (AMPs) are being considered as potential alternatives, but inactivity in physiological salt environments, serum, and plasma often limits further therapeutic development. Tryptophan end-tagging is a strategy to overcome these limitations and is thought to selectively enhance membrane permeabilization in both fungal and bacterial plasma membranes. Here, we show that C-terminal tryptophan end-tagging of the tick-derived peptide Os-C transforms an inactive peptide into Os-C(W5), an antifungal peptide capable of preventing the formation of C. albicans biofilms. Mechanistic insight is provided by circular dichroism spectroscopy and molecular dynamics simulations, which demonstrate that tryptophan end-tagging alters the secondary structure of Os-C, while the latter reveals that end-tagging reduces interactions with, and insertion into, a model C. albicans membrane but promotes peptide aggregation on its surface. Interestingly, this leads to the induction of reactive oxygen species production rather than membrane permeabilization, and consequently, oxidative stress leads to cell wall damage. Os-C(W5) does not induce the hemolysis of human erythrocytes. Reduced cell adhesion and viability contribute to decreased biofilm extracellular matrix formation which, although reduced, is retained in the serum-containing medium. In this study, tryptophan end-tagging was identified as a promising strategy for enhancing the antifungal activity, including the biofilm inhibitory activity of Os-C against C. albicans in physiological salt environments.

6.
Methods Mol Biol ; 2778: 331-344, 2024.
Article in English | MEDLINE | ID: mdl-38478287

ABSTRACT

The type 9 secretion system (T9SS) is a recently discovered machinery that both transports cargo proteins across the Gram-negative bacterial outer membrane and attaches them to lipopolysaccharides on the extracellular surface. Outer membrane proteins (OMPs) are key components of the T9SS and are involved in both steps. In this chapter, we describe a method for the in silico modeling of T9SS OMPs and their complexes, and model validation. This is useful when the production of recombinant OMPs is difficult, and these protocols can also be applied to OMP complexes outside of the T9SS.


Subject(s)
Bacterial Outer Membrane Proteins , Membrane Proteins , Bacterial Outer Membrane Proteins/metabolism , Bacterial Proteins/metabolism
7.
Biomacromolecules ; 25(3): 1916-1922, 2024 Mar 11.
Article in English | MEDLINE | ID: mdl-38315982

ABSTRACT

Selective one-dimensional 13C-13C spin-diffusion solid-state nuclear magnetic resonance (SSNMR) provides evidence for CH/π ring packing interactions between Pro and Tyr residues in 13C-enriched Latrodectus hesperus dragline silk. The secondary structure of Pro-containing motifs in dragline spider silks consistently points to an elastin-like type II ß-turn conformation based on 13C chemical shift analysis. 13C-13C spin diffusion measurements as a function of mixing times allow for the measurement of spatial proximity between the Pro and Tyr rings to be ∼0.5-1 nm, supporting strong Pro-Tyr ring interactions that likely occur through a CH/π mechanism. These results are supported by molecular dynamics (MD) simulations and analysis and reveals new insights into the secondary structure and Pro-Tyr ring stacking interactions for one of nature's toughest biomaterials.


Subject(s)
Black Widow Spider , Spiders , Animals , Silk/chemistry , Tyrosine , Black Widow Spider/chemistry , Molecular Dynamics Simulation , Proline , Magnetic Resonance Spectroscopy
8.
Nano Lett ; 24(6): 2011-2017, 2024 Feb 14.
Article in English | MEDLINE | ID: mdl-38306708

ABSTRACT

Polymeric nanoparticles are a highly promising drug delivery formulation. However, a lack of understanding of the molecular mechanisms that underlie their drug solubilization and controlled release capabilities has hindered the efficient clinical translation of such technologies. Polyethylene glycol-poly(lactic-co-glycolic) acid (PEG-PLGA) nanoparticles have been widely studied as cancer drug delivery vehicles. In this letter, we use unbiased coarse-grained molecular dynamics simulations to model the self-assembly of a PEG-PLGA nanoparticle and its solubulization of the anticancer peptide, EEK, with good agreement with previously reported experimental structural data. We applied unsupervised machine learning techniques to quantify the conformations that polymers adopt at various locations within the nanoparticle. We find that the local microenvironments formed by the various polymer conformations promote preferential EEK solubilization within specific regions of the NP. This demonstrates that these microenvironments are key in controlling drug storage locations within nanoparticles, supporting the rational design of nanoparticles for therapeutic applications.


Subject(s)
Nanoparticles , Polyesters , Polymers , Polymers/chemistry , Lactic Acid/chemistry , Polyethylene Glycols/chemistry , Drug Delivery Systems/methods , Peptides , Nanoparticles/chemistry , Drug Carriers/chemistry
9.
Nanoscale ; 16(5): 2642-2653, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38229565

ABSTRACT

Lipid-based drug carriers are an attractive option to solubilise poorly water soluble therapeutics. Previously, we reported that the digestion of a short tail PC lipid (2C6PC) by the PLA2 enzyme has a significant effect on the structure and stability of the micelles it forms. Here, we studied the interactions of micelles of varying composition representing various degrees of digestion with a model ordered (70 mol% DPPC & 30 mol% cholesterol) and disordered (100% DOPC) lipid membrane. Micelles of all compositions disassociated when interacting with the two different membranes. As the percentage of digestion products (C6FA and C6LYSO) in the micelle increased, the disassociation occurred more rapidly. The C6FA inserts preferentially into both membranes. We find that all micelle components increase the area per lipid, increase the disorder and decrease the thickness of the membranes, and the 2C6PC lipid molecules have the most significant impact. Additionally, there is an increase in permeation of water into the membrane that accompanies the insertion of C6FA into the DOPC membranes. We show that the natural digestion of lipid micelles result in molecular species that can enhance the permeability of lipid membranes that in turn result in an enhanced delivery of drugs.


Subject(s)
Lipid Bilayers , Micelles , Lipid Bilayers/chemistry , Water/chemistry , Permeability , Digestion
10.
Nanoscale ; 15(44): 17825-17838, 2023 Nov 16.
Article in English | MEDLINE | ID: mdl-37850423

ABSTRACT

Albumin nanoparticles (NPs) and PEGylated liposomes have garnered tremendous interest as therapeutic drug carriers due to their unique physicochemical properties. These unique properties also have significant effects on the composition and structure of the protein corona formed around these NPs in a biological environment. Herein, protein corona formation on albumin NPs and liposomes was simultaneously evaluated through in vitro and simulation studies. The sizes of both types of NPs increased with more negatively charged interfaces upon being introduced into fetal bovine serum. Gel electrophoresis and label-free quantitative proteomics were performed to identify proteins recruited to the hard corona, and fewer proteins were found in albumin NPs than in liposomes, which is in accordance with isothermal titration calorimetry. The cellular uptake efficiency of the two NPs significantly differed in different serum concentrations, which was further scrutinized by loading an anticancer compound into albumin NPs. The presence of the hard protein corona increased the cellular uptake of albumin NPs in comparison with liposomes. In our simulation study, a specific receptor present in the membrane was greatly attracted to the albumin-apolipoprotein E complex. Overall, this study not only evaluated protein corona formation on albumin NPs, but also made promising advancements toward albumin- and liposome-based therapeutic systems.


Subject(s)
Nanoparticles , Protein Corona , Protein Corona/chemistry , Liposomes/chemistry , Nanomedicine , Nanoparticles/chemistry , Serum Albumin, Bovine
11.
Nanoscale ; 15(37): 15230-15237, 2023 Sep 29.
Article in English | MEDLINE | ID: mdl-37671739

ABSTRACT

Contemporary synthetic chemistry approaches can be used to yield a range of distinct polymer topologies with precise control. The topology of a polymer strongly influences its self-assembly into complex nanostructures however a clear mechanistic understanding of the relationship between polymer topology and self-assembly has not yet been developed. In this work, we use atomistic molecular dynamics simulations to provide a nanoscale picture of the self-assembly of three poly(ethylene oxide)-poly(methyl acrylate) block copolymers with different topologies into micelles. We find that the topology affects the ability of the micelle to form a compact hydrophobic core, which directly affects its stability. Also, we apply unsupervised machine learning techniques to show that the topology of a polymer affects its ability to take a conformation in response to the local environment within the micelles. This work provides foundations for the rational design of polymer nanostructures based on their underlying topology.

12.
J Chem Inf Model ; 63(12): 3761-3771, 2023 06 26.
Article in English | MEDLINE | ID: mdl-37288782

ABSTRACT

Machine learning methods offer the opportunity to design new functional materials on an unprecedented scale; however, building the large, diverse databases of molecules on which to train such methods remains a daunting task. Automated computational chemistry modeling workflows are therefore becoming essential tools in this data-driven hunt for new materials with novel properties, since they offer a means by which to create and curate molecular databases without requiring significant levels of user input. This ensures that well-founded concerns regarding data provenance, reproducibility, and replicability are mitigated. We have developed a versatile and flexible software package, PySoftK (Python Soft Matter at King's College London) that provides flexible, automated computational workflows to create, model, and curate libraries of polymers with minimal user intervention. PySoftK is available as an efficient, fully tested, and easily installable Python package. Key features of the software include the wide range of different polymer topologies that can be automatically generated and its fully parallelized library generation tools. It is anticipated that PySoftK will support the generation, modeling, and curation of large polymer libraries to support functional materials discovery in the nanotechnology and biotechnology arenas.


Subject(s)
Software , Humans , Reproducibility of Results , Databases, Factual
13.
Commun Chem ; 6(1): 15, 2023 Jan 17.
Article in English | MEDLINE | ID: mdl-36697756

ABSTRACT

Lipid peroxidation is a process which is key in cell signaling and disease, it is exploited in cancer therapy in the form of photodynamic therapy. The appearance of hydrophilic moieties within the bilayer's hydrocarbon core will dramatically alter the structure and mechanical behavior of membranes. Here, we combine viscosity sensitive fluorophores, advanced microscopy, and X-ray diffraction and molecular simulations to directly and quantitatively measure the bilayer's structural and viscoelastic properties, and correlate these with atomistic molecular modelling. Our results indicate an increase in microviscosity and a decrease in the bending rigidity upon peroxidation of the membranes, contrary to the trend observed with non-oxidized lipids. Fluorescence lifetime imaging microscopy and MD simulations give evidence for the presence of membrane regions of different local order in the oxidized membranes. We hypothesize that oxidation promotes stronger lipid-lipid interactions, which lead to an increase in the lateral heterogeneity within the bilayer and the creation of lipid clusters of higher order.

14.
NPJ Antimicrob Resist ; 1(1): 8, 2023.
Article in English | MEDLINE | ID: mdl-38686212

ABSTRACT

Some antimicrobial peptides (AMPs) have potent bactericidal activity and are being considered as potential alternatives to classical antibiotics. In response to an infection, such AMPs are often produced in animals alongside other peptides with low or no perceivable antimicrobial activity, whose role is unclear. Here we show that six AMPs from the Winter Flounder (WF) act in synergy against a range of bacterial pathogens and provide mechanistic insights into how this increases the cooperativity of the dose-dependent bactericidal activity and potency that enable therapy. Only two WF AMPs have potent antimicrobial activity when used alone but we find a series of two-way combinations, involving peptides which otherwise have low or no activity, yield potent antimicrobial activity. Weakly active WF AMPs modulate the membrane interactions of the more potent WF AMPs and enable therapy in a model of Acinetobacter baumannii burn wound infection. The observed synergy and emergent behaviour may explain the evolutionary benefits of producing a family of related peptides and are attractive properties to consider when developing AMPs towards clinical applications.

15.
J Mol Biol ; 434(23): 167871, 2022 12 15.
Article in English | MEDLINE | ID: mdl-36404438

ABSTRACT

Porphyromonas gingivalis is a gram-negative oral anaerobic pathogen and is one of the key causative agents of periodontitis. P. gingivalis utilises a range of virulence factors, including the cysteine protease RgpB, to drive pathogenesis and these are exported and attached to the cell surface via the type IX secretion system (T9SS). All cargo proteins possess a conserved C-terminal signal domain (CTD) which is recognised by the T9SS, and the outer membrane ß-barrel protein PorV (PG0027/LptO) can interact with cargo proteins as they are exported to the bacterial surface. Using a combination of solution nuclear magnetic resonance (NMR) spectroscopy, biochemical analyses, machine-learning-based modelling and molecular dynamics (MD) simulations, we present a structural model of a PorV:RgpB-CTD complex from P. gingivalis. This is the first structural insight into CTD recognition by the T9SS and shows how the conserved motifs in the CTD are the primary sites that mediate binding. In PorV, interactions with extracellular surface loops are important for binding the CTD, and together these appear to cradle and lock RgpB-CTD in place. This work provides insight into cargo recognition by PorV but may also have important implications for understanding other aspects of type-IX dependent secretion.


Subject(s)
Bacterial Proteins , Bacterial Secretion Systems , Membrane Proteins , Molecular Dynamics Simulation , Porphyromonas gingivalis , Bacterial Proteins/chemistry , Membrane Proteins/chemistry , Porphyromonas gingivalis/metabolism , Porphyromonas gingivalis/pathogenicity , Virulence Factors/chemistry , Bacterial Secretion Systems/chemistry , Protein Domains
16.
Membranes (Basel) ; 12(9)2022 Aug 24.
Article in English | MEDLINE | ID: mdl-36135847

ABSTRACT

Cholesterol plays a key role in the molecular and mesoscopic organisation of lipid membranes and it is expected that changes in its molecular structure (e.g., through environmental factors such as oxidative stress) may affect adversely membrane properties and function. In this study, we present evidence that oxidation of cholesterol has significant effects on the mechanical properties, molecular and mesoscopic organisation and lipid-sterol interactions in condensed monolayers composed of the main species found in the inner leaflet of the erythrocyte membrane. Using a combination of experimental methods (static area compressibility, surface dilatational rheology, fluorescence microscopy, and surface sensitive X-ray techniques) and atomistic molecular dynamics simulations, we show that oxidation of cholesterol to 7-ketocholesterol leads to stiffening of the monolayer (under both static and dynamic conditions), significant changes in the monolayer microdomain organisation, disruption in the van der Waals, electrostatic and hydrophobic interactions between the sterol and the other lipid species, and the lipid membrane hydration. Surface sensitive X-ray techniques reveal that, whilst the molecular packing mode is not significantly affected by cholesterol oxidation in these condensed phases, there are subtle changes in membrane thickness and a significant decrease in the coherence length in monolayers containing 7-ketocholesterol.

17.
ACS Nano ; 16(9): 14432-14442, 2022 Sep 27.
Article in English | MEDLINE | ID: mdl-36103148

ABSTRACT

Conjugated polymers are employed in a variety of application areas due to their bright fluorescence and strong biocompatibility. However, understanding the structure of amorphous conjugated polymers on the nanoscale is extremely challenging compared to their related crystalline phases. Using a bespoke classical force field, we study amorphous poly(9,9-di-n-octylfluorene-alt-benzothiadiazole) (F8BT) with molecular dynamics simulations to investigate the role that its nanoscale structure plays in controlling its emergent (and all-important) optical properties. Notably, we show that a giant percolating cluster exists within amorphous F8BT, which has ramifications in understanding the nature of interchain species that drive the quantum yield reduction and bathochromic shift observed in conjugated polymer-based devices and nanostructures. We also show that distinct conformations can be unravelled from within the disordered structure of amorphous F8BT using a two-stage machine learning protocol, highlighting a link between molecular conformation and ring stacking propensity. This work provides predictive understanding by which to enhance the optical properties of next-generation conjugated polymer-based devices and materials by rational, simulation-led design principles.

18.
Biochemistry ; 61(11): 1029-1040, 2022 06 07.
Article in English | MEDLINE | ID: mdl-35609188

ABSTRACT

The pharmacodynamic profile of antimicrobial peptides (AMPs) and their in vivo synergy are two factors that are thought to restrict resistance evolution and ensure their conservation. The frog Rana temporaria secretes a family of closely related AMPs, temporins A-L, as an effective chemical dermal defense. The antibacterial potency of temporin L has been shown to increase synergistically in combination with both temporins B and A, but this is modest. Here we show that the less potent temporin B enhances the cooperativity of the in vitro antibacterial activity of the more potent temporin L against EMRSA-15 and that this may be associated with an altered interaction with the bacterial plasma membrane, a feature critical for the antibacterial activity of most AMPs. Addition of buforin II, a histone H2A fragment, can further increase the cooperativity. Molecular dynamics simulations indicate temporins B and L readily form hetero-oligomers in models of Gram-positive bacterial plasma membranes. Patch-clamp studies show transmembrane ion conductance is triggered with lower amounts of both peptides and more quickly when used in combination, but conductance is of a lower amplitude and pores are smaller. Temporin B may therefore act by forming temporin L/B hetero-oligomers that are more effective than temporin L homo-oligomers at bacterial killing and/or by reducing the probability of the latter forming until a threshold concentration is reached. Exploration of the mechanism of synergy between AMPs isolated from the same organism may therefore yield antibiotic combinations with advantageous pharmacodynamic properties.


Subject(s)
Anti-Bacterial Agents , Antimicrobial Cationic Peptides , Anti-Bacterial Agents/chemistry , Antimicrobial Cationic Peptides/chemistry , Bacteria , Cell Membrane/metabolism , Gram-Positive Bacteria
19.
Nanoscale ; 14(14): 5392-5403, 2022 Apr 07.
Article in English | MEDLINE | ID: mdl-35319029

ABSTRACT

Surfactants are used in a wide range of chemical and biological applications, and for pharmaceutical purposes are frequently employed to enhance the solubility of poorly water soluble drugs. In this study, all-atom molecular dynamics (MD) simulations and small-angle neutron scattering (SANS) experiments have been used to investigate the drug solubilisation capabilities of the micelles that result from 10 wt% aqueous solutions of the non-ionic surfactant, Triton X-100 (TX-100). Specifically, we have investigated the solubilisation of saturation amounts of the sodium salts of two nonsteroidal anti-inflammatory drugs: ibuprofen and indomethacin. We find that the ibuprofen-loaded micelles are more non-spherical than the indomethacin-loaded micelles which are in turn even more non-spherical than the TX-100 micelles that form in the absence of any drug. Our simulations show that the TX-100 micelles are able to solubilise twice as many indomethacin molecules as ibuprofen molecules, and the indomethacin molecules form larger aggregates in the core of the micelle than ibuprofen. These large indomethacin aggregates result in the destabilisation of the TX-100 micelle, which leads to an increase in the amount of water inside of the core of the micelle. These combined effects cause the eventual division of the indomethacin-loaded micelle into two daughter micelles. These results provide a mechanistic description of how drug interactions can affect the stability of the resulting nanoparticles.


Subject(s)
Ibuprofen , Micelles , Ibuprofen/chemistry , Indomethacin , Octoxynol , Surface-Active Agents/chemistry , Water/chemistry
20.
J Chem Theory Comput ; 17(9): 5907-5919, 2021 Sep 14.
Article in English | MEDLINE | ID: mdl-34450002

ABSTRACT

Molecular dynamics simulations are now widely used to study emergent phenomena in lipid membranes with complex compositions. Here, we present LiPyphilic-a fast, fully tested, and easy-to-install Python package for analyzing such simulations. Analysis tools in LiPyphilic include the identification of cholesterol flip-flop events, the classification of local lipid environments, and the degree of interleaflet registration. LiPyphilic is both force field- and resolution-agnostic, and by using the powerful atom selection language of MDAnalysis, it can handle membranes with highly complex compositions. LiPyphilic also offers two on-the-fly trajectory transformations to (i) fix membranes split across periodic boundaries and (ii) perform nojump coordinate unwrapping. Our implementation of nojump unwrapping accounts for fluctuations in the box volume under the NPT ensemble-an issue that most current implementations have overlooked. The full documentation of LiPyphilic, including installation instructions and links to interactive online tutorials, is available at https://lipyphilic.readthedocs.io/en/latest.


Subject(s)
Membrane Lipids/chemistry , Molecular Dynamics Simulation
SELECTION OF CITATIONS
SEARCH DETAIL