Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 62
Filter
1.
J Cancer Res Ther ; 20(4): 1306-1313, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39206993

ABSTRACT

OBJECTIVE: The current study aimed to investigate the dynamic changes in brain glymphatic function during chemotherapy in breast cancer patients (BCP) and their correlation with cognitive function. MATERIALS AND METHODS: A total of 40 healthy female participants (control group) and 80 female BCP were included. Various cognitive assessment tools were used to evaluate cognitive function. Diffusion tensor imaging along the perivascular space was employed to measure brain glymphatic function. RESULTS: Following chemotherapy, BCP exhibited a significant decline in various cognitive scores. After chemotherapy, the along the perivascular space index, a parameter indicating brain glymphatic function, was slightly higher than that at baseline and the control group levels and was correlated with cognitive scores. CONCLUSION: This study unveiled a close relationship between the dynamic changes in brain glymphatic function after chemotherapy and cognitive function in BCP. Our findings contribute to a deeper understanding of the brain mechanisms underlying chemotherapy-related cognitive impairment and provide a theoretical basis for future interventions and treatments. In addition, they offer a new perspective for exploring the relationship between brain function and cognitive states.


Subject(s)
Brain , Breast Neoplasms , Diffusion Tensor Imaging , Glymphatic System , Humans , Female , Breast Neoplasms/drug therapy , Breast Neoplasms/surgery , Breast Neoplasms/pathology , Middle Aged , Adult , Brain/diagnostic imaging , Brain/drug effects , Cognition/drug effects , Case-Control Studies , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Antineoplastic Combined Chemotherapy Protocols/adverse effects , Chemotherapy-Related Cognitive Impairment , Preoperative Care/methods
2.
Aging (Albany NY) ; 16(15): 11744-11754, 2024 Aug 12.
Article in English | MEDLINE | ID: mdl-39137314

ABSTRACT

To evaluate the protective effect of LIPUS at the early stage of brain trauma in rats, 45 rats were randomly divided into 3 groups: sham (n = 15), TBI (n = 15) and LIPUS treatment groups (n = 15). Ipsilateral and contralateral cortical and thalamic parameters obtained by diffusion tensor imaging (DTI) and fast low-angle shot magnetic resonance imaging (FLASH-MRI) were measured at different times after trauma. For fractional anisotropy (FA) and T2* values, two-way repeated measures ANOVA with Tukey's post hoc was used for intergroup comparisons. With observation time prolonged, the FA values of the ipsilateral cortex in the TBI group gradually increased and were significantly higher than those in the LIPUS treatment group on Day 7 (adjusted P = 0.0067). FA values in the contralateral cortex decreased at this time and were significantly lower than those in the LIPUS treatment group (adjusted P = 0.0192). Meanwhile, compared with LIPUS group, FA values were significantly higher in the injured thalamus (adjusted P = 0.0025). Combined with correlation analysis, FA values were positively correlated with neuronal damage (P = 0.0148, r2 = 0.895). At 7 days after trauma, T2* values in the ipsilateral cortex of the TBI group were significantly lower. After analysis of ferritin content and correlation, we found that T2* values were negatively correlated with ferritin (P = 0.0259, r2 = -0.849). By measuring post-traumatic changes in FA and T2* values, it is possible to demonstrate a neuronal protective effect of LIPUS in the early phase of TBI rats and promote brain rehabilitation.


Subject(s)
Brain Injuries, Traumatic , Diffusion Tensor Imaging , Animals , Brain Injuries, Traumatic/therapy , Brain Injuries, Traumatic/diagnostic imaging , Rats , Male , Rats, Sprague-Dawley , Anisotropy , Thalamus/diagnostic imaging , Thalamus/metabolism , Thalamus/pathology , Magnetic Resonance Imaging , Disease Models, Animal
3.
Biomol Biomed ; 24(4): 912-922, 2024 Feb 29.
Article in English | MEDLINE | ID: mdl-38427808

ABSTRACT

Clear cell renal cell carcinoma (ccRCC) is a malignancy with a dismal prognosis, caused by the buildup of fat and glycogen. Sirtuin 1 (Sirt1) is a deacetylase that regulates lipid metabolism. In this study, we collected tumor and paracancer tissues from 386 ccRCC patients and followed their prognosis over an extended time period. The expression of Sirt1 in these tissues was assessed using immunohistochemistry, and LinkedOmics database analysis identified differentially expressed genes associated with Sirt1. The survival curve was generated using the Kaplan-Meier method, and immune infiltration was analyzed using the Tumor Immune Estimation Resource (TIMER) web tool. Our findings revealed that Sirt1 was expressed in tumor tissues, but not in normal tissues, and its high expression was associated with a worse prognosis. Furthermore, we observed a positive correlation between high Sirt1 expression and perirenal fat invasion and necrosis, leading to poorer survival outcomes. We established a nomogram to predict prognosis, and a correlation was observed with immune infiltration. In conclusion, our results suggest that high Sirt1 expression is associated with lipid metabolism disorder and immune infiltration, ultimately contributing to a dismal prognosis in ccRCC.


Subject(s)
Biomarkers, Tumor , Carcinoma, Renal Cell , Kidney Neoplasms , Lipid Metabolism , Sirtuin 1 , Humans , Carcinoma, Renal Cell/immunology , Carcinoma, Renal Cell/mortality , Carcinoma, Renal Cell/genetics , Carcinoma, Renal Cell/pathology , Carcinoma, Renal Cell/metabolism , Sirtuin 1/genetics , Sirtuin 1/metabolism , Lipid Metabolism/genetics , Kidney Neoplasms/immunology , Kidney Neoplasms/mortality , Kidney Neoplasms/genetics , Kidney Neoplasms/pathology , Kidney Neoplasms/metabolism , Male , Biomarkers, Tumor/metabolism , Biomarkers, Tumor/genetics , Female , Prognosis , Middle Aged , Gene Expression Regulation, Neoplastic , Aged , Kaplan-Meier Estimate
4.
Int J Cancer ; 155(1): 172-183, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38411299

ABSTRACT

Epithelioid glioblastoma (eGBM) is a rare subtype of GBM. Given the update of the definition of GBM, the understanding of the molecular characteristics and prognosis of "true" adult eGBM remains limited. Herein, we retrospectively analyzed the clinicopathological data of 39 adult eGBM cases. Adult eGBM primarily affected females, with a male-to-female ratio of 1:2.3. The average age of diagnosis was 53 years, and the tumor affected the temporal lobe in 41% of cases (16/39, 41%). Microscopically, the tumors consisted mainly or entirely of epithelioid cells. Perivascular infiltration (10/39, 25.6%) and leptomeningeal dissemination (7/39, 17.9%) were not uncommon. BRAF V600E mutation was detected in 40.9% of cases (n = 9/22). Next-generation sequencing revealed that CDKN2A/B homogeneous deletion was the most frequently mutated gene (8/10, 80%), followed by TERT promoter mutation (7/10, 70%), Cyclin-dependent kinases 4 or 6 (CDK4/6) amplification (5/10, 50%) and BRAF V600E mutation (50%, 5/10). Notably, the incidence of ARID1B mutation in eGBM was 50% (5/10), representing the first report of such a mutation in this subtype of GBM. ARID1B was known to be a subunit of the SWI/SNF chromatin remodeler. Chromosome analysis showed a 7+/10- signature in 90% (9/10) cases. Adult eGBM carried a dismal prognosis compared to GBM with IDH and H3 wild-type (typical GBM) (OS: 13.89 vs 24.30 months; P = .003) and even typical GBM without MGMT promoter methylation (OS: 13.89 vs 22.08 months; P = .036). Based on these findings, it can be concluded that adult eGBM harbors a high frequency of the 7+/10- signature and alterations in the MAPK pathway, SWI/SNF complex and cyclin-related genes and portends an extremely poor prognosis.


Subject(s)
Brain Neoplasms , DNA Modification Methylases , Glioblastoma , Mutation , Proto-Oncogene Proteins B-raf , Transcription Factors , Tumor Suppressor Proteins , Humans , Glioblastoma/genetics , Glioblastoma/pathology , Glioblastoma/mortality , Male , Female , Retrospective Studies , Middle Aged , Prognosis , Adult , Aged , Transcription Factors/genetics , Brain Neoplasms/genetics , Brain Neoplasms/pathology , Brain Neoplasms/mortality , Proto-Oncogene Proteins B-raf/genetics , Chromosomal Proteins, Non-Histone/genetics , Telomerase/genetics , Cyclin-Dependent Kinase Inhibitor p16/genetics , Cyclin-Dependent Kinase 4/genetics , Promoter Regions, Genetic/genetics , DNA Repair Enzymes/genetics
5.
Eur J Med Res ; 28(1): 119, 2023 Mar 13.
Article in English | MEDLINE | ID: mdl-36915210

ABSTRACT

BACKGROUND: Bone is one of the most frequent sites for breast cancer metastasis. Breast cancer bone metastasis (BCBM) leads to skeletal morbidities including pain, fractures, and spinal compression, all of which severely impact quality of life. Immunotherapy is a promising therapy for patients with advanced cancer, but whether it may provide benefit to metastatic bone cancer is currently unknown. Thus, a better understanding of the immune landscape of bone-disseminated breast cancers may reveal new therapeutic strategies. In this study, we use histopathological analysis to investigate changes within the immune microenvironment of primary breast cancer and paired BCBM. METHODS: Sixty-three patients with BCBM, including 31 with paired primary and bone metastatic lesions, were included in our study. The percentage of stroma and stromal tumor-infiltrating lymphocytes (TILs) was evaluated by histopathological analysis. The quantification of stromal TILs (CD4 + and CD8 +), macrophages (CD68 + and HLA-DR +), programmed cell death protein 1 (PD-1), and programmed cell death protein ligand 1 (PD-L1) was evaluated through immunohistochemical (IHC) staining. Statistical analysis was performed with paired t test, Wilcoxon test, spearman correlation test, and univariate and multivariate cox regression. RESULTS: Median survival after BCBM pathological diagnosis was 20.5 months (range: 3-95 months). Of the immune parameters measured, none correlated with survival after bone metastasis was diagnosed. Compared to the primary site, bone metastases exhibited more tumor stroma (mean: 58.5% vs 28.87%, p < 0.001) and less TILs (mean: 8.45% vs 14.03%, p = 0.042), as determined by H&E analysis. The quantification of primary vs metastatic tissue area with CD4 + (23.95/mm2 vs 51.69/mm2, p = 0.027 and with CD8 + (18.15/mm2 vs 58.95/mm2, p = 0.004) TILs similarly followed this trend and was reduced in number for bone metastases. The number of CD68 + and HLA-DR + macrophages showed no significant difference between primary sites and bone metastases. PD-1 expression was present in 68.25% of the bone metastasis, while PD-L1 expression was only present in 7.94% of the bone metastasis. CONCLUSIONS: Our findings suggest that compared to the primary breast cancer site, bone metastases harbor a less active immune microenvironment. Despite this relatively dampened immune landscape, expression of PD-1 and PD-L1 in the bone metastasis indicates a potential benefit from immune checkpoint inhibitors for some BCBM cases.


Subject(s)
Bone Neoplasms , Breast Neoplasms , Tumor Microenvironment , Female , Humans , B7-H1 Antigen/metabolism , Biomarkers, Tumor/metabolism , Breast Neoplasms/pathology , Prognosis , Programmed Cell Death 1 Receptor/metabolism , Quality of Life , Tumor Microenvironment/immunology , Bone Neoplasms/secondary
6.
Breast Cancer Res ; 24(1): 70, 2022 10 25.
Article in English | MEDLINE | ID: mdl-36284362

ABSTRACT

BACKGROUND: Metastatic breast carcinoma is commonly considered during differential diagnosis when metastatic disease is detected in females. In addition to the tumor morphology and documented clinical history, sensitive and specific immunohistochemical (IHC) markers such as GCDFP-15, mammaglobin, and GATA3 are helpful for determining breast origin. However, these markers are reported to show lower sensitivity in certain subtypes, such as triple-negative breast cancer (TNBC). MATERIALS AND METHODS: Using bioinformatics analyses, we identified a potential diagnostic panel to determine breast origin: matrix Gla protein (MGP), transcriptional repressor GATA binding 1 (TRPS1), and GATA-binding protein 3 (GATA3). We compared MGP, TRPS1, and GATA3 expression in different subtypes of breast carcinoma of (n = 1201) using IHC. As a newly identified marker, MGP expression was also evaluated in solid tumors (n = 2384) and normal tissues (n = 1351) from different organs. RESULTS: MGP and TRPS1 had comparable positive expression in HER2-positive (91.2% vs. 92.0%, p = 0.79) and TNBC subtypes (87.3% vs. 91.2%, p = 0.18). GATA3 expression was lower than MGP (p < 0.001) or TRPS1 (p < 0.001), especially in HER2-positive (77.0%, p < 0.001) and TNBC (43.3%, p < 0.001) subtypes. TRPS1 had the highest positivity rate (97.9%) in metaplastic TNBCs, followed by MGP (88.6%), while only 47.1% of metaplastic TNBCs were positive for GATA3. When using MGP, GATA3, and TRPS1 as a novel IHC panel, 93.0% of breast carcinomas were positive for at least two markers, and only 9 cases were negative for all three markers. MGP was detected in 36 cases (3.0%) that were negative for both GATA3 and TRPS1. MGP showed mild-to-moderate positive expression in normal hepatocytes, renal tubules, as well as 31.1% (99/318) of hepatocellular carcinomas. Rare cases (0.6-5%) had focal MGP expression in renal, ovarian, lung, urothelial, and cholangiocarcinomas. CONCLUSIONS: Our findings suggest that MGP is a newly identified sensitive IHC marker to support breast origin. MGP, TRPS1, and GATA3 could be applied as a reliable diagnostic panel to determine breast origin in clinical practice.


Subject(s)
Breast Neoplasms , Triple Negative Breast Neoplasms , Female , Humans , Triple Negative Breast Neoplasms/diagnosis , Triple Negative Breast Neoplasms/genetics , Triple Negative Breast Neoplasms/metabolism , Breast Neoplasms/diagnosis , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Biomarkers, Tumor/metabolism , GATA3 Transcription Factor/genetics , Mammaglobin A/analysis , Mammaglobin A/metabolism , Calcium-Binding Proteins , Repressor Proteins/genetics , Repressor Proteins/metabolism , Matrix Gla Protein
7.
Front Comput Neurosci ; 16: 923247, 2022.
Article in English | MEDLINE | ID: mdl-35814344

ABSTRACT

Purpose: In order to evaluate the neuroprotective effect of low-intensity pulsed ultrasound (LIPUS) for acute traumatic brain injury (TBI), we studied the potential of apparent diffusion coefficient (ADC) values and ADC-derived first-order features regarding this problem. Methods: Forty-five male Sprague Dawley rats (sham group: 15, TBI group: 15, LIPUS treated: 15) were enrolled and underwent magnetic resonance imaging. Scanning layers were acquired using a multi-shot readout segmentation of long variable echo trains (RESOLVE) to decrease distortion. The ultrasound transducer was applied to the designated region in the injured cortical areas using a conical collimator and was filled with an ultrasound coupling gel. Regions of interest were manually delineated in the center of the damaged cortex on the diffusion weighted images (b = 800 s/mm2) layer by layer for the TBI and LIPUS treated groups using the open-source software ITK-SNAP. Before analysis and modeling, the features were normalized using a z-score method, and a logistic regression model with a backward filtering method was employed to perform the modeling. The entire process was completed using the R language. Results: During the observation time, the ADC values ipsilateral to the trauma in the TBI and LIPUS groups increased rapidly up to 24 h. After statistical analysis, the 10th percentile, 90th percentile, mean, skewness, and uniformity demonstrated a significant difference among three groups. The receiver operating characteristic curve (ROC) analysis shows that the combined LR model exhibited the highest area under the curve value (AUC: 0.96). Conclusion: The combined LR model of first-order features based on the ADC map can acquire a higher diagnostic performance than each feature only in evaluating the neuroprotective effect of LIPUS for TBI. Models based on first-order features may have potential value in predicting the therapeutic effect of LIPUS in clinical practice in the future.

8.
Oncogene ; 41(4): 515-526, 2022 01.
Article in English | MEDLINE | ID: mdl-34782720

ABSTRACT

Metastasis is the leading cause of death of patients with esophageal squamous cell carcinoma (ESCC). Although an increasing number of studies have demonstrated the involvement of G3BP2 in several human cancers, how G3BP2 interacts with long noncoding RNAs and regulates mRNA transcripts in mediating ESCC metastasis remains unclear. In this study, we uncovered that G3BP2 was upregulated in ESCC. Further analysis revealed that upregulation of G3BP2 was significantly correlated with lymph node metastasis, depth of tumor invasion and unfavorable outcomes in ESCC patients. Both in vitro and in vivo functional assays demonstrated that G3BP2 dramatically enhanced ESCC cell migration and invasion. Mechanistically, LINC01554 maintained the high G3BP2 expression in ESCC by protecting G3BP2 from degradation through ubiquitination and the interaction domains within LINC01554 and G3BP2 were identified. In addition, RNA-seq revealed that HDGF was regulated by G3BP2. G3BP2 bound to HDGF mRNA transcript to stabilize its expression. Ectopic expression of HDGF effectively abolished the G3BP2 depletion-mediated inhibitory effect on tumor cell migration. Intriguingly, introduction of compound C108 which can inhibit G3BP2 remarkedly suppressed ESCC cell metastasis in vitro and in vivo. Collectively, this study describes a newly discovered regulatory axis, LINC01554/G3BP2/HDGF, that facilitates ESCC metastasis and will provide novel therapeutic strategies for ESCC.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Esophageal Squamous Cell Carcinoma/genetics , RNA, Long Noncoding/genetics , RNA-Binding Proteins/metabolism , Animals , Cell Line, Tumor , Cell Movement , Cell Proliferation , Disease Progression , Humans , Mice , Mice, Nude , Transfection , Up-Regulation
9.
Sci China Life Sci ; 65(3): 604-617, 2022 03.
Article in English | MEDLINE | ID: mdl-34185240

ABSTRACT

The smooth transportation of substances through the brain extracellular space (ECS) is crucial to maintaining brain function; however, the way this occurs under simulated microgravity remains unclear. In this study, tracer-based magnetic resonance imaging (MRI) and DECS-mapping techniques were used to image the drainage of brain interstitial fluid (ISF) from the ECS of the hippocampus in a tail-suspended hindlimb-unloading rat model at day 3 (HU-3) and 7 (HU-7). The results indicated that drainage of the ISF was accelerated in the HU-3 group but slowed markedly in the HU-7 group. The tortuosity of the ECS decreased in the HU-3 group but increased in the HU-7 group, while the volume fraction of the ECS increased in both groups. The diffusion rate within the ECS increased in the HU-3 group and decreased in the HU-7 group. The alterations to ISF drainage and diffusion in the ECS were recoverable in the HU-3 group, but neither parameter was restored in the HU-7 group. Our findings suggest that early changes to the hippocampal ECS and ISF drainage under simulated microgravity can be detected by tracer-based MRI, providing a new perspective for studying microgravity-induced nano-scale structure abnormities and developing neuroprotective approaches involving the brain ECS.


Subject(s)
Extracellular Space/diagnostic imaging , Hippocampus/pathology , Magnetic Resonance Imaging/methods , Weightlessness Simulation , Animals , Extracellular Fluid , Hippocampus/diagnostic imaging , Male , Rats , Rats, Sprague-Dawley
10.
Micromachines (Basel) ; 12(8)2021 Jul 30.
Article in English | MEDLINE | ID: mdl-34442531

ABSTRACT

Lapping is one of the standard essential methods to realise the global planarization of SiC and other semiconductor substrates. It is necessary to deeply study the mechanism to obtain SiC lapping process parameters with a strong comprehensive lapping performance (i.e., high material removal rate (MRRm), small surface roughness (Ra), and low total thickness variation (TTV)). The effects of the lapping process parameters and their interactions on lapping performance for SiC were investigated using orthogonal experiments; the effects on the MRRm, Ra, TTV, and optimal parameters under the conditions of a single evaluation index were investigated using intuitive analysis (range analysis, variance analysis, and effect curve analysis). The entropy value method and grey relational analysis were used to transform the multi-evaluation-index optimisation into a single-index optimisation about the grey relational grade (GRG) and to comprehensively evaluate the lapping performance of each process parameter. The results showed that the lapping plate types, abrasive size, and their interaction effect had the most significant effects on MRRm and Ra, with a contribution of over 85%. The interaction between the lapping plate types and abrasive size was also found to have the most significant effect on TTV, with a contribution of up to 51.07%. As the lapping plate's hardness and abrasive size increased, the MRRm and Ra also gradually increased. As the lapping normal-pressure increased, MRRm increased, Ra gradually decreased, and TTV first decreased and then increased. MRRm, Ra, and TTV first increased and then decreased with increasing abrasive concentration. Compared to the optimisation results obtained by intuitive analysis, the process parameter optimised by the grey relational analysis resulted in a smooth surface with an MRRm of 90.2 µm/h, an Ra of 0.769 nm, and a TTV of 3 µm, with a significant improvement in the comprehensive lapping performance. This study reveals that a combination of orthogonal experiments and grey relational analysis can provide new ideas for optimising the process parameters of SiC.

11.
Front Oncol ; 11: 689626, 2021.
Article in English | MEDLINE | ID: mdl-34422643

ABSTRACT

Muscle-invasive bladder cancer (MIBC) is the most common urinary system carcinoma associated with poor outcomes. It is necessary to develop a robust classification system for prognostic prediction of MIBC. Recently, increasing omics data at different levels of MIBC were produced, but few integration methods were used to classify MIBC that reflects the patient's prognosis. In this study, we constructed an autoencoder based deep learning framework to integrate multi-omics data of MIBC and clustered samples into two different subgroups with significant overall survival difference (P = 8.11 × 10-5). As an independent prognostic factor relative to clinical information, these two subtypes have some significant genomic differences. Remarkably, the subtype of poor prognosis had significant higher frequency of chromosome 3p deletion. Immune decomposition analysis results showed that these two MIBC subtypes had different immune components including macrophages M1, resting NK cells, regulatory T cells, plasma cells, and naïve B cells. Hallmark gene set enrichment analysis was performed to investigate the functional character difference between these two MIBC subtypes, which revealed that activated IL-6/JAK/STAT3 signaling, interferon-alpha response, reactive oxygen species pathway, and unfolded protein response were significantly enriched in upregulated genes of high-risk subtype. We constructed MIBC subtyping models based on multi-omics data and single omics data, respectively, and internal and external validation datasets showed the robustness of the prediction model as well as its ability of prognosis (P < 0.05 in all datasets). Finally, through bioinformatics analysis and immunohistochemistry experiments, we found that KRT7 can be used as a biomarker reflecting MIBC risk.

12.
Oncogene ; 40(26): 4453-4467, 2021 07.
Article in English | MEDLINE | ID: mdl-34108621

ABSTRACT

Research over the past decade has suggested important roles for pseudogenes in glioma. This study aimed to show that pseudogene PRELI domain-containing 1 pseudogene 6 (PRELID1P6) promotes glioma progression. Aberrant expression of genes was screened using The Cancer Genome Atlas database. We found that mRNA level of PRELID1P6 was highly upregulated in glioma and was associated with a shorter survival time. Functional studies showed that the knockdown of PRELID1P6 decreased cell proliferation, sphere formation, and clone formation ability and blocked the cell cycle transition at G0/G1, while overexpression of PRELID1P6 had the opposite effects. Mechanistically, knockdown of PRELID1P6 changed the cellular localization of heterogeneous nuclear ribonucleoprotein H1 (hnRNPH1) from nucleus to cytoplasm, which promoted ubiquitin-mediated degradation of hnRNPH1. RNA-sequence and gene set enrichment analysis suggested that knockdown of PRELID1P6 regulates the apoptosis signaling pathway. Western blotting showed that PRELID1P6 increased TRF2 expression by hnRNPH1-mediated alternative splicing effect and activated the Akt/mTOR pathway. Furthermore, Akt inhibitor MK2206 treatment reversed the oncogenic function of PRELID1P6. PRELID1P6 was also found to be negatively regulated by miR-1825. Our result showed that PRELID1P6 promotes glioma progression through the hnHNPH1-Akt/mTOR pathway. These findings shed new light on the important role of PRELID1P6 as a novel oncogene for glioma.


Subject(s)
Brain Neoplasms/genetics , Glioma/genetics , Mitochondrial Proteins/genetics , Proto-Oncogene Proteins c-akt/genetics , Pseudogenes/genetics , TOR Serine-Threonine Kinases/genetics , Animals , Brain Neoplasms/drug therapy , Brain Neoplasms/pathology , Cell Line, Tumor , Female , Glioma/drug therapy , Glioma/pathology , Heterocyclic Compounds, 3-Ring/pharmacology , Heterogeneous-Nuclear Ribonucleoproteins , Humans , Male , Mice , Mice, Inbred BALB C , Mice, Nude , Signal Transduction/drug effects , Signal Transduction/genetics
13.
Front Pharmacol ; 12: 648491, 2021.
Article in English | MEDLINE | ID: mdl-33967786

ABSTRACT

Chemoresistance is one of the leading causes for the failure of tumor treatment. Hence, it is necessary to study further and understand the potential mechanisms of tumor resistance to design and develop novel anti-tumor drugs. Post-translational modifications are critical for proteins' function under physiological and pathological conditions, among which ubiquitination is the most common one. The protein degradation process mediated by the ubiquitin-proteasome system is the most well-known function of ubiquitination modification. However, ubiquitination also participates in the regulation of many other biological processes, such as protein trafficking and protein-protein interaction. A group of proteins named deubiquitinases can hydrolyze the isopeptide bond and disassemble the ubiquitin-protein conjugates, thus preventing substrate proteins form degradation or other outcomes. Ubiquitin-specific protease 7 (USP7) is one of the most extensively studied deubiquitinases. USP7 exhibits a high expression signature in various malignant tumors, and increased USP7 expression often indicates the poor tumor prognosis, suggesting that USP7 is a marker of tumor prognosis and a potential drug target for anti-tumor therapy. In this review, we first discussed the structure and function of USP7. Further, we summarized the underlying mechanisms by which tumor cells develop resistance to anti-tumor therapies, provided theoretical support for targeting USP7 to overcome drug resistance, and some inspiration for the design and development of USP7 inhibitors.

14.
Front Oncol ; 11: 565755, 2021.
Article in English | MEDLINE | ID: mdl-33912439

ABSTRACT

OBJECTIVE: To evaluate the effectiveness of a novel computerized quantitative analysis based on histopathological and computed tomography (CT) images for predicting the postoperative prognosis of esophageal squamous cell carcinoma (ESCC) patients. METHODS: We retrospectively reviewed the medical records of 153 ESCC patients who underwent esophagectomy alone and quantitatively analyzed digital histological specimens and diagnostic CT images. We cut pathological images (6000 × 6000) into 50 × 50 patches; each patient had 14,400 patches. Cluster analysis was used to process these patches. We used the pathological clusters to all patches ratio (PCPR) of each case for pathological features and we obtained 20 PCPR quantitative features. Totally, 125 computerized quantitative (20 PCPR and 105 CT) features were extracted. We used a recursive feature elimination approach to select features. A Cox hazard model with L1 penalization was used for prognostic indexing. We compared the following prognostic models: Model A: clinical features; Model B: quantitative CT and clinical features; Model C: quantitative histopathological and clinical features; and Model D: combined information of clinical, CT, and histopathology. Indices of concordance (C-index) and leave-one-out cross-validation (LOOCV) were used to assess prognostic model accuracy. RESULTS: Five PCPR and eight CT features were treated as significant indicators in ESCC prognosis. C-indices adjusted for LOOCV were comparable among four models, 0.596 (Model A) vs. 0.658 (Model B) vs. 0.651 (Model C), and improved to 0.711with Model D combining information of clinical, CT, and histopathology (all p<0.05). Using Model D, we stratified patients into low- and high-risk groups. The 3-year overall survival rates of low- and high-risk patients were 38.0% and 25.0%, respectively (p<0.001). CONCLUSION: Quantitative prognostic modeling using a combination of clinical data, histopathological, and CT images can stratify ESCC patients with surgery alone into high-risk and low-risk groups.

15.
Cancer Res ; 81(10): 2636-2650, 2021 05 15.
Article in English | MEDLINE | ID: mdl-33782099

ABSTRACT

Long noncoding RNAs (lncRNA) are involved in tumorigenesis and drug resistance. However, the roles and underlying mechanisms of lncRNAs in colorectal cancer are still unknown. In this work, through transcriptomic profiling analysis of 21 paired tumor and normal samples, we identified a novel colorectal cancer-related lncRNA, MNX1-AS1. MNX1-AS1 expression was significantly upregulated in colorectal cancer and associated with poor prognosis. In vitro and in vivo gain- and loss-of-function experiments showed that MNX1-AS1 promotes the proliferation of colorectal cancer cells. MNX1-AS1 bound to and activated Y-box-binding protein 1 (YB1), a multifunctional RNA/DNA-binding protein, and prevented its ubiquitination and degradation. A marked overlap between genes that are differentially expressed in MNX1-AS1 knockdown cells and transcriptional targets of YB1 was observed. YB1 knockdown mimicked the loss of viability phenotype observed upon depletion of MNX1-AS1. In addition, MYC bound the promoter of the MNX1-AS1 locus and activated its transcription. In vivo experiments showed that ASO inhibited MNX1-AS1, which suppressed the proliferation of colorectal cancer cells in both cell-based and patient-derived xenograft models. Collectively, these findings suggest that the MYC-MNX1-AS1-YB1 axis might serve as a potential biomarker and therapeutic target in colorectal cancer. SIGNIFICANCE: This study highlights the discovery of a novel colorectal cancer biomarker and therapeutic target, MNX1-AS1, a long noncoding RNA that drives proliferation via a MYC/MNX1-AS1/YB1 signaling pathway. GRAPHICAL ABSTRACT: http://cancerres.aacrjournals.org/content/canres/81/10/2636/F1.large.jpg.


Subject(s)
Colorectal Neoplasms/pathology , Gene Expression Regulation, Neoplastic , Homeodomain Proteins/genetics , Proto-Oncogene Proteins c-myc/metabolism , RNA, Antisense/genetics , RNA, Long Noncoding/genetics , Transcription Factors/genetics , Y-Box-Binding Protein 1/chemistry , Animals , Apoptosis , Cell Proliferation , Colorectal Neoplasms/genetics , Colorectal Neoplasms/metabolism , Disease Progression , Female , Humans , Mice , Mice, Inbred BALB C , Mice, Nude , Prognosis , Proto-Oncogene Proteins c-myc/genetics , Survival Rate , Tumor Cells, Cultured , Xenograft Model Antitumor Assays , Y-Box-Binding Protein 1/genetics , Y-Box-Binding Protein 1/metabolism
16.
Phytother Res ; 35(5): 2785-2796, 2021 May.
Article in English | MEDLINE | ID: mdl-33462870

ABSTRACT

Drug-induced liver injury (DILI) has become a significant health care problem worldwide. Centella asiatica (L.) urban was traditionally used to prevent or treat various diseases, yet whether it works on hepatic injury remains unclear. In this study, multiple experimental models with different damage degrees and types of liver injury have been established to evaluate the hepatoprotective effects of an n-butanol extract of Centella asiatica (CA-BU). Our results revealed that CA-BU improved hepatocyte L02 cells survival from H2 O2 -induced oxidative damage in a concentration-dependent manner. We further verified the hepatoprotective effects of CA-BU in mice models of acetaminophen-induced acute liver injury (one of the most common DILIs clinically) and CCl4 -induced acute chemical liver injury, and a rat model of chronic alcoholic steatohepatitis. Furthermore, network pharmacology approaches were performed to explore the underlying mechanisms, and we predicted AKT1, EGFR, VEGFA, and STAT3 as the potential therapeutic targets. In follow-up studies, we will focus on targets verification and provide a deeper insight into the mechanisms of CA-BU against liver damage. Finally, we hope that these findings will provide new ideas and insights for the treatment of acute or chronic liver injury in the clinic.

17.
Acta Pharm Sin B ; 11(12): 4008-4019, 2021 Dec.
Article in English | MEDLINE | ID: mdl-35024322

ABSTRACT

Cholangiocarcinoma (CCA) has emerged as an intractable cancer with scanty therapeutic regimens. The aberrant activation of Yes-associated protein (YAP) and transcriptional co-activator with PDZ-binding motif (TAZ) are reported to be common in CCA patients. However, the underpinning mechanism remains poorly understood. Deubiquitinase (DUB) is regarded as a main orchestrator in maintaining protein homeostasis. Here, we identified Josephin domain-containing protein 2 (JOSD2) as an essential DUB of YAP/TAZ that sustained the protein level through cleavage of polyubiquitin chains in a deubiquitinase activity-dependent manner. The depletion of JOSD2 promoted YAP/TAZ proteasomal degradation and significantly impeded CCA proliferation in vitro and in vivo. Further analysis has highlighted the positive correlation between JOSD2 and YAP abundance in CCA patient samples. Collectively, this study uncovers the regulatory effects of JOSD2 on YAP/TAZ protein stabilities and profiles its contribution in CCA malignant progression, which may provide a potential intervention target for YAP/TAZ-related CCA patients.

18.
Onco Targets Ther ; 13: 8887-8899, 2020.
Article in English | MEDLINE | ID: mdl-33061416

ABSTRACT

PURPOSE: The present study aims to demonstrate the correlation between estrogen-related receptor α (ERRα) and G protein-coupled estrogen receptor (GPER) expression and its predictive role in the prognosis of patients with triple-negative breast cancer (TNBC). METHODS: A retrospective review of 199 cases of TNBC was conducted to assess the GPER and ERRα expression, and its clinicopathologic and prognostic implications. Subsequently, the effects of ERRα and GPER on cell viability, migration, and invasion induced by estrogen were also investigated in vitro. RESULTS: Compared to TNBCs with ERRα low expression, ERRα-high patients exhibited higher nuclear grade, more frequent lymph nodal metastasis, a higher rate of local recurrence, and distant metastasis. Survival analyses revealed that ERRα-high patients had decreased overall survival (OS), local recurrence-free survival (LRFS), and distant disease-free survival (DDFS) than ERRα-low patients. The GPER expression level positively correlated with ERRα (R=0.167, P=0.18), and TNBCs with ERRα-low/GPER-low demonstrated the best survival outcomes among groups. In vitro, E2 significantly enhanced cell viability, migration, and invasion in BT-549 and MDA-MB-231 cell lines, which was associated with the increased expression of ERRα. Moreover, the overexpression of ERRα induced by estrogen and G1 (GPER agonist) was reversed by knocking down of GPER and blocking the MAPK signaling with PD98059 in both cell lines. CONCLUSION: Our findings suggest that ERRα and GPER synergistically predict unfavorable prognosis in TNBCs. Mechanically, GPER mediates the upregulation expression of ERRα induced by estrogen and promotes cell viability, migration, and invasion.

19.
Front Pharmacol ; 11: 01228, 2020.
Article in English | MEDLINE | ID: mdl-33101009

ABSTRACT

OBJECTIVE: Cavin3 is a putative tumor suppressor protein. However, its molecular action on tumor regulation is largely unknown. The aim of the current study is to explore the implication of cavin3 alteration, its clinical significance, and any potential molecular mechanisms in the regulation of breast cancer (BC). METHODS: TCGA (The Cancer Genome Atlas) and GTEx (Genotype-Tissue Expression) data bases, and 17 freshly paired BC and adjacent normal tissues were analyzed for mRNA levels of Cavin3. Furthermore, cavin3 protein expression from 407 primary BC samples were assessed by immunohistochemistry (IHC) and measured by H-score. The clinical significance of cavin3 expression was explored by Kaplan-Meier analysis and the Cox regression method. In vitro biological assays were performed to elucidate the function and underlying mechanisms of cavin 3 in BC cell lines. RESULTS: Cavin3 mRNA was dramatically down-regulated in BC compared with the negative control. The median H-score of cavin3 protein by IHC was 50 (range 0-270). There were 232 (57%) and 175 (43%) cases scored as low (H-score≤50) and high (H-score >50) levels of cavin3, respectively. Low cavin3 was correlated with a higher T and N stage, and worse distant metastasis-free survival (DMFS) and overall survival (OS). Multivariate survival analysis revealed low cavin3 was an independent fact for worse DMFS. In BC cells, an overexpression of cavin3 could inhibit cell migration and invasion, and significantly decreased the level of p-Akt. Knockout of cavin3, meanwhile, promoted cell invasion ability and increased the level of p-AKT. CONCLUSION: Cavin3 expression is significantly lower in BC and is correlated with distant metastasis and worse survival. Cavin3 functions as a metastasis suppressor via inhibiting the AKT pathway, suggesting cavin3 as a potential prognostic biomarker and a target for BC treatment.

SELECTION OF CITATIONS
SEARCH DETAIL