Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 115
Filter
1.
Structure ; 2024 Jun 16.
Article in English | MEDLINE | ID: mdl-38925121

ABSTRACT

The coronavirus disease 2019 (COVID-19) is caused by a novel coronavirus called severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which spreads rapidly all over the world. The main protease (Mpro) is significant to the replication and transcription of viruses, making it an attractive drug target against coronaviruses. Here, we introduce a series of novel inhibitors which are designed de novo through structure-based drug design approach that have great potential to inhibit SARS-CoV-2 Mproin vitro. High-resolution structures show that these inhibitors form covalent bonds with the catalytic cysteine through the novel dibromomethyl ketone (DBMK) as a reactive warhead. At the same time, the designed phenyl group beside the DBMK warhead inserts into the cleft between H41 and C145 through π-π stacking interaction, splitting the catalytic dyad and disrupting proton transfer. This unique binding model provides novel clues for the cysteine protease inhibitor development of SARS-CoV-2 as well as other pathogens.

2.
Clin Sci (Lond) ; 138(13): 777-795, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38860674

ABSTRACT

Renal tubular injury is considered as the main pathological feature of acute kidney injury (AKI), and mitochondrial dysfunction in renal tubular cells is implicated in the pathogenesis of AKI. The estrogen-related receptor γ (ERRγ) is a member of orphan nuclear receptors which plays a regulatory role in mitochondrial biosynthesis, energy metabolism and many metabolic pathways. Online datasets showed a dominant expression of ERRγ in renal tubules, but the role of ERRγ in AKI is still unknown. In the present study, we investigated the role of ERRγ in the pathogenesis of AKI and the therapeutic efficacy of ERRγ agonist DY131 in several murine models of AKI. ERRγ expression was reduced in kidneys of AKI patients and AKI murine models along with a negative correlation to the severity of AKI. Consistently, silencing ERRγ in vitro enhanced cisplatin-induced tubular cells apoptosis, while ERRγ overexpression in vivo utilizing hydrodynamic-based tail vein plasmid delivery approach alleviated cisplatin-induced AKI. ERRγ agonist DY131 could enhance the transcriptional activity of ERRγ and ameliorate AKI in various murine models. Moreover, DY131 attenuated the mitochondrial dysfunction of renal tubular cells and metabolic disorders of kidneys in AKI, and promoted the expression of the mitochondrial transcriptional factor A (TFAM). Further investigation showed that TFAM could be a target gene of ERRγ and DY131 might ameliorate AKI by enhancing ERRγ-mediated TFAM expression protecting mitochondria. These findings highlighted the protective effect of DY131 on AKI, thus providing a promising therapeutic strategy for AKI.


Subject(s)
Acute Kidney Injury , Receptors, Estrogen , Acute Kidney Injury/metabolism , Acute Kidney Injury/genetics , Animals , Receptors, Estrogen/metabolism , Humans , Male , Mice , Mitochondria/metabolism , Mice, Inbred C57BL , Metabolic Diseases/metabolism , Apoptosis , Disease Models, Animal , Transcription Factors/metabolism , Transcription Factors/genetics , Cisplatin , DNA-Binding Proteins/metabolism , DNA-Binding Proteins/genetics
3.
Nucl Med Commun ; 2024 May 27.
Article in English | MEDLINE | ID: mdl-38803240

ABSTRACT

OBJECTIVE: The purpose of this study was to analyze the correlation between specified dual time-point fluorine-18 fluorodeoxyglucose (18F-FDG) PET/computed tomography (CT) imaging parameters and pathological characteristics in non-small cell lung cancer (NSCLC) patients. METHODS: This study retrospectively analyzed 47 patients with NSCLC. All patients underwent dual time-point 18F-FDG PET/CT imaging. We obtained the metabolic parameters, standardized uptake value (SUV) maximum, SUVmean, delayed standardized uptake value (DSUV) maximum, DSUVmean, delay index standardized uptake value (DISUV) maximum, and DISUVmean, of the primary tumor. The tumor size was measured by CT. All lymph nodes had a definite pathological diagnosis. We next evaluated the status of the lymph node metastases (LNM) and the correlations between metabolic parameters and clinical characteristics. Receiver operating characteristic curves were drawn for the prediction of LNM. RESULTS: We found that the DSUVmax, DISUVmax, DSUVmean, and tumor size were significantly related to LNM (P = 0.036, 0.009, and 0.049, respectively). Multivariate analysis revealed that tumor size and DISUVmax were independent risk factors for LNM in lung cancer patients. According to the receiver operating characteristic curve analysis, the optimal cutoff values for DISUVmax and tumor size were 0.33 and 2.8 cm, respectively. When these two parameters were combined, the area under the curve for predicting LNM in NSCLC was 0.768, and the sensitivity was 95.7% for predicting LNM in lung cancer patients. We further allocated the patients to three groups: the high-risk group (tumor size ≥ 2.8 cm, DISUVmax ≥ 0.33), the moderate-risk group (tumor size ≥ 2.8 cm, DISUVmax < 0.33, or tumor size < 2.8 cm, DISUVmax ≥ 0.33), and the low-risk group (tumor size < 2.8 cm, DISUVmax < 0.33). The rates of LNM were 70, 50, and 0%, respectively. CONCLUSION: Tumor size and DISUVmax are risk factors for predicting LNM, and they are more useful in combination. Compared with standard PET/CT imaging, dual time-point PET/CT imaging has added value in predicting LNM in NSCLC patients.

4.
Mol Neurobiol ; 61(2): 1202-1220, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37695471

ABSTRACT

Migraine is a complex and multi-system dysfunction. The realization of its pathophysiology and diagnosis is developing rapidly. Migraine has been linked to gastrointestinal disorders such as irritable bowel syndrome and celiac disease. There is also direct and indirect evidence for a relationship between migraine and the gut-brain axis, but the exact mechanism is not yet explained. Studies have shown that this interaction appears to be influenced by a variety of factors, such as inflammatory mediators, gut microbiota, neuropeptides, and serotonin pathways. Recent studies suggest that immune cells can be the potential tertiary structure between migraine and gut-brain axis. As the hot interdisciplinary subject, the relationship between immunology and gastrointestinal tract is now gradually clear. Inflammatory signals are involved in cellular and molecular responses that link central and peripheral systems. The gastrointestinal symptoms associated with migraine and experiments associated with antibiotics have shown that the intestinal microbiota is abnormal during the attacks. In this review, we focus on the mechanism of migraine and gut-brain axis, and summarize the tertiary structure between immune cells, neural network, and gastrointestinal tract.


Subject(s)
Gastrointestinal Diseases , Irritable Bowel Syndrome , Migraine Disorders , Humans , Brain-Gut Axis , Brain , Gastrointestinal Diseases/complications , Irritable Bowel Syndrome/complications
5.
Infect Drug Resist ; 16: 7247-7253, 2023.
Article in English | MEDLINE | ID: mdl-38023399

ABSTRACT

Purpose: Nocardia gipuzkoensis is a novel species that solely identified in patients with pulmonary infections by far. Growing evidence showed the excellent performance of metagenomics next-generation sequencing (mNGS) on pathogenic identification, especially for new species. Here, we described the first case of an elderly female patient suddenly suffering from neurological disorders owing to N. gipuzkoensis infection. And linezolid could effectively treat N. gipuzkoensis infection. Patients and Methods: The results of imaging, laboratory cultures, and mNGS, as well as therapeutic process are shared. Results: An elderly female patient suddenly suffered from neurological disorders with dysphasia and right limb trembles under no obvious causes. Subsequently, she was diagnosed as intracranial space-occupying lesions by magnetic resonance imaging (MRI). The isolate from brain secretion was further identified as N. gipuzkoensis through mNGS. The targeted therapy with linezolid according to the antimicrobial susceptibility was used to treat cerebral abscess induced by N. gipuzkoensis. During the follow-up, no relapse was observed for the patient after surgery for 104 days. Conclusion: Cerebral abscess induced by N. gipuzkoensis is rare disorder with high mortality. mNGS has been identified as a promising tool in pathogen diagnosis for timely therapy. Linezolid as one of the antimicrobial drugs could effectively treat N. gipuzkoensis infection and prevent adverse outcomes.

6.
Front Biosci (Landmark Ed) ; 28(9): 196, 2023 09 12.
Article in English | MEDLINE | ID: mdl-37796681

ABSTRACT

BACKGROUND: Serine hydroxymethyltransferase (SHMT) is a serine-glycine-one-carbon metabolic enzyme in which SHMT1 and SHMT2 encode the cytoplasmic and mitochondrial isoenzymes, respectively. SHMT1 and SHMT2 are key players in cancer metabolic reprogramming, and thus are attractive targets for cancer therapy. However, the role of SHMT in patients with renal cell carcinoma (RCC) has not been fully elucidated. We aimed to systematically analyze the expression, gene regulatory network, prognostic value, and target prediction of SHMT1 and SHMT2 in patients with kidney chromophobe (KICH), kidney renal clear cell carcinoma (KIRC), and kidney renal papillary cell carcinoma (KIRP); elucidate the association between SHMT expression and RCC; and identify potential new targets for clinical RCC treatment. METHODS: Several online databases were used for the analysis, including cBioPortal, TRRUST, GeneMANIA, GEPIA, Metascape, UALCAN, LinkedOmics, and TIMER. RESULTS: SHMT1 and SHMT2 transcript levels were significantly down- and upregulated, respectively, in patients with KICH, KIRC, and KIRP, based on sample type, individual cancer stage, sex, and patient age. Compared to men, women with KIRC and KIRP showed significantly up- and downregulated SHMT1 transcript levels, respectively. However, SHMT2 transcript levels were significantly upregulated in the patients mentioned above. KIRC and KIRP patients with high SHMT1 expression had longer survival periods than those with low SHMT1 expression. In patients with KIRC, the findings were similar to those mentioned above. However, in KICH patients, the findings were the opposite regarding SHMT2 expression. SHMT1 versus SHMT2 were altered by 9% versus 3% (n = 66 KICH patients), 4% versus 4% (n = 446 KIRC patients), and 6% versus 7% (n = 280 KIRP patients). SHMT1 versus SHMT2 promoter methylation levels were significantly up- and downregulated in patients with KIRP versus KIRC and KIRP, respectively. SHMT1, SHMT2, and their neighboring genes (NG) formed a complex network of interactions. The molecular functions of SHMT1 and its NG in patients with KICH, KIRC, and KIRP, included clathrin adaptor, metalloendopeptidase, and GTPase regulator activities; lipid binding, active transmembrane transporter activity, and lipid transporter activity; and type I interferon receptor binding, integrin binding, and protein heterodimerization, respectively. Their respective Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways were involved in lysosome activity, human immunodeficiency virus 1 infection, and endocytosis; coronavirus disease 2019 and neurodegeneration pathways (multiple diseases); and RIG-I-like receptor signaling pathway, cell cycle, and actin cytoskeleton regulation. The molecular functions of SHMT2 and its NG in patients with KICH, KIRC, and KIRP included cell adhesion molecule binding and phospholipid binding; protein domain-specific binding, enzyme inhibitor activity, and endopeptidase activity; and hormone activity, integrin binding, and protein kinase regulator activity, respectively. For patients with KIRC versus KIRP, the KEGG pathways were involved in cAMP and calcium signaling pathways versus microRNAs (MiRNAs) in cancer cells and neuroactive ligand-receptor interactions, respectively. We identified the key transcription factors of SHMT1 and its NG. CONCLUSIONS: SHMT1 and SHMT2 expression levels were different in patients with RCC. SHMT1 and SHMT2 may be potential therapeutic and prognostic biomarkers in these patients. Transcription factor (MYC, STAT1, PPARG, AR, SREBF2, and SP3) and miRNA (miR-17-5P, miR-422, miR-492, miR-137, miR-30A-3P, and miR-493) regulations may be important strategies for RCC treatment.


Subject(s)
COVID-19 , Carcinoma, Renal Cell , Kidney Neoplasms , MicroRNAs , Male , Humans , Female , Carcinoma, Renal Cell/genetics , Glycine Hydroxymethyltransferase/genetics , Glycine Hydroxymethyltransferase/chemistry , Glycine Hydroxymethyltransferase/metabolism , Kidney Neoplasms/genetics , Kidney Neoplasms/pathology , Integrins , Lipids
7.
Medicine (Baltimore) ; 102(42): e35627, 2023 Oct 20.
Article in English | MEDLINE | ID: mdl-37861483

ABSTRACT

BACKGROUND: PANoptosis may play a vital role in psoriasis. We investigated the relationship between PANoptosis in psoriasis. METHODS: Genes information was mainly obtained from GeneCards and the gene expression omnibus database. Genefunctions identification was based on gene ontology and Kyoto Encyclopedia of Genes and Genomes analyses. Gene set enrichment analysis was used to identify enriched signaling pathways in psoriasis. We constructed PPI networks using the search tool for the retrieval of interacting genes database and Cytoscape and explored mRNA-miRNA, mRNA-TF, and mRNA-drug interaction networks. Receiver operating characteristic curves were performed to screen potential biomarkers among these hub genes. Immune cell infiltration was analyzed using the Pearson algorithm, and the correlation between immune-cell abundance and PANoptosis-related differentially expressed gene (PDGs) was investigated. RESULTS: We identified 10 PDGs, which were mainly involved in pyroptosis, cytokine-mediated signaling pathways, Salmonella infection and NOD-like receptor signaling pathway. The activated pathways were mostly proinflammatory and immunoregulatory pathways between immune cells. BAK1, CASP4, IL18, and IRF1 were identified as hub genes in the mRNA-miRNA network, and BAK1, IRF1, and PYCARD were hub genes in the mRNA-TF network. CASP1 was found to be the most targeted gene by drugs or molecular compounds. We found PDGs were positively associated with proinflammatory immune cell infiltration and negatively associated with anti-inflammatory or regulatory immune cells. CONCLUSION: We confirmed the role of PANoptosis in psoriasis for the first time and predicted hub genes and immune characteristics, which provides new ideas for further investigation of psoriasis on pathogenic mechanisms and therapeutic strategies.


Subject(s)
MicroRNAs , Psoriasis , Humans , MicroRNAs/genetics , Psoriasis/genetics , Algorithms , Biomarkers , RNA, Messenger , Computational Biology , Gene Regulatory Networks
8.
J Gastroenterol Hepatol ; 38(11): 2018-2026, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37581362

ABSTRACT

BACKGROUND AND AIM: Low-intensity pulsed ultrasound (LIPUS) can effectively regulate the central and peripheral nervous system. However, whether LIPUS could act on acupuncture points to modulate the activity of peripheral nervous has rarely been studied. Our study aimed to investigate whether LIPUS at ST36 could improve gastric emptying in diabetic gastroparesis rats. METHODS: Sprague-Dawley male rats were divided into three groups: control group (CON), diabetic gastroparesis group (DM), and diabetic gastroparesis LIPUS treated group (LIPUS). The body weight and blood glucose were recorded every week. Glucose tolerance, gastric emptying rate, and gastric motility were measured before and after treatment. Gastric motility was assessed by ultrasonic examination and Muscle strip experiment. The expression level of c-Kit was assessed by immunohistochemistry staining. Levels of TNF-α, p-NF-κB p-65, NF-κB p-65, and p-IKKß, IKKß were measured by western blot. RESULTS: We reported LIPUS at an intensity of 0.88 W/cm2 exhibited significant differences in functional recovery of gastric delayed emptying in diabetic rats. Through ultrasound gastric motility functional testing and analysis of gastric antral smooth muscle strips indirectly and directly proved the effectiveness of LIPUS for the recovery of gastric delayed emptying. Pathological analysis and western blot indicated that the mechanism by which LIPUS applied to ST36 improved gastric motility may be partially attributed to the inhibition of the TNF-α/IKKß/NF-κB signaling pathway, thereby rescuing the damaged interstitial cells of Cajal network. CONCLUSION: LIPUS at ST36 improved the gastric motility and rescued the damaged networks of interstitial cells of Cajal. LIPUS may have a promising therapeutic potential for diabetic gastroparesis.


Subject(s)
Diabetes Mellitus, Experimental , Gastroparesis , Rats , Male , Animals , NF-kappa B , Gastroparesis/therapy , I-kappa B Kinase , Tumor Necrosis Factor-alpha , Rats, Sprague-Dawley , Diabetes Mellitus, Experimental/therapy , Signal Transduction , Ultrasonic Waves , Protein Serine-Threonine Kinases
9.
Lipids Health Dis ; 22(1): 127, 2023 Aug 10.
Article in English | MEDLINE | ID: mdl-37563740

ABSTRACT

OBJECTIVE: This study aimed to investigate the role of cholesterol metabolism-related genes in nonfunctioning pituitary neuroendocrine tumors (NF-PitNETs) invading the cavernous sinus and analyze the differences in immune cell infiltration between invasive and noninvasive NF-PitNETs. METHODS: First, a retrospective analysis of single-center clinical data was performed. Second, the immune cell infiltration between invasive and noninvasive NF-PitNETs in the GSE169498 dataset was further analyzed, and statistically different cholesterol metabolism-related gene expression matrices were obtained from the dataset. The hub cholesterol metabolism-related genes in NF-PitNETs were screened by constructing machine learning models. In accordance with the hub gene, 73 cases of NF-PitNETs were clustered into two subtypes, and the functional differences and immune cell infiltration between the two subtypes were further analyzed. RESULTS: The clinical data of 146 NF-PitNETs were evaluated, and the results showed that the cholesterol (P = 0.034) between invasive and noninvasive NF-PitNETs significantly differed. After binary logistic analysis, cholesterol was found to be an independent risk factor for cavernous sinus invasion (CSI) in NF-PitNETs. Bioinformatics analysis found three immune cells between invasive and noninvasive NF-PitNETs were statistically significant in the GSE169498 dataset, and 34 cholesterol metabolism-related genes with differences between the two groups were obtained 12 hub genes were selected by crossing the two machine learning algorithm results. Subsequently, cholesterol metabolism-related subgroups, A and B, were obtained by unsupervised hierarchical clustering analysis. The results showed that 12 immune cells infiltrated differentially between the two subgroups. The chi-square test revealed that the two subgroups had statistically significance in the invasive and noninvasive samples (P = 0.001). KEGG enrichment analysis showed that the differentially expressed genes were mainly enriched in the neural ligand-receptor pathway. GSVA analysis showed that the mTORC signaling pathway was upregulated and played an important role in the two-cluster comparison. CONCLUSION: By clinical data and bioinformatics analysis, cholesterol metabolism-related genes may promote the infiltration abundance of immune cells in NF-PitNETs and the invasion of cavernous sinuses by NF-PitNETs through the mTOR signaling pathway. This study provides a new perspective to explore the pathogenesis of cavernous sinus invasion by NF-PitNETs and determine potential therapeutic targets for this disease.


Subject(s)
Neuroendocrine Tumors , Pituitary Neoplasms , Humans , Neuroendocrine Tumors/genetics , Retrospective Studies , Lipid Metabolism/genetics , Pituitary Neoplasms/genetics , Signal Transduction
11.
Support Care Cancer ; 31(7): 444, 2023 Jul 06.
Article in English | MEDLINE | ID: mdl-37410217

ABSTRACT

OBJECTIVE: To investigate their compliance with postoperative oral nutritional supplementation and nutritional outcomes. METHODS: A total of 84 patients with colorectal cancer surgery with NRS-2002 risk score ≥ 3 who were treated with oral nutritional supplementation were selected and divided into control and observation groups according to the random number table method, with 42 cases in each group. The control group received conventional oral nutritional supplementation and dietary nutrition education; the observation group established a nutrition intervention group based on the Goal Attainment Theory and carried out individualized nutrition education based on the Goal Attainment Theory. The nutritional indicators at 1 day postoperative, 7 days postoperative, oral nutritional supplementation adherence scores at 7 and 14 days postoperative, and the attainment rate of trans-oral nutritional intake at 21 days postoperative were compared between the 2 groups of patients. RESULTS: There was no statistically significant difference between the nutritional status indexes of the 2 groups of patients before the intervention, p > 0.05; when comparing the prealbumin of the 2 groups of patients at 7 days postoperatively, the prealbumin level of the patients in the observation group at 7 days postoperatively (200.25 ± 53.25) was better than that of the control group (165.73 ± 43.00), with a p value of 0.002, and the difference was statistically significant (p < 0.05). Comparison of oral nutritional supplementation adherence scores at 7 and 14 days postoperatively showed that ONS treatment adherence scores were better than those of the control group, with statistically significant differences (p < 0.05). When comparing the attainment rate of oral nutritional intake at 21 days after surgery, the difference was statistically significant (p < 0.05). CONCLUSION: Nutritional education based on the Goal Attainment Theory can effectively improve the adherence to oral nutritional supplementation therapy and protein intake attainment rate of colorectal cancer patients after surgery and effectively improve the nutritional status of patients.


Subject(s)
Colorectal Neoplasms , Nutrition Therapy , Humans , Prealbumin , Goals , Nutritional Status , Dietary Supplements , Colorectal Neoplasms/surgery
12.
Front Endocrinol (Lausanne) ; 14: 1089531, 2023.
Article in English | MEDLINE | ID: mdl-36793283

ABSTRACT

Background: Bromodomain and extracellular terminal (BET) family (including BRD2, BRD3, and BRD4) is considered to be a major driver of cancer cell growth and a new target for cancer therapy. Currently, more than 30 targeted inhibitors have shown significant inhibitory effects against various tumors in preclinical and clinical trials. However, the expression levels, gene regulatory networks, prognostic value, and target prediction of BRD2, BRD3, and BRD4 in adrenocortical carcinoma (ACC) have not been fully elucidated. Therefore, this study aimed to systematically analyze the expression, gene regulatory network, prognostic value, and target prediction of BRD2, BRD3, and BRD4 in patients with ACC, and elucidated the association between BET family expression and ACC. We also provided useful information on BRD2, BRD3, and BRD4 and potential new targets for the clinical treatment of ACC. Methods: We systematically analyzed the expression, prognosis, gene regulatory network, and regulatory targets of BRD2, BRD3, and BRD4 in ACC using multiple online databases, including cBioPortal, TRRUST, GeneMANIA, GEPIA, Metascape, UALCAN, LinkedOmics, and TIMER. Results: The expression levels of BRD3 and BRD4 were significantly upregulated in ACC patients at different cancer stages. Moreover, the expression of BRD4 was significantly correlated with the pathological stage of ACC. ACC patients with low BRD2, BRD3, and BRD4 expressions had longer survival than patients with high BRD2, BRD3, and BRD4 expressions. The expression of BRD2, BRD3, and BRD4 was altered by 5%, 5%, and 12% in 75 ACC patients, respectively. The frequency of gene alterations in the 50 most frequently altered BRD2, BRD3, and BRD4 neighboring genes in these ACC patients were ≥25.00%, ≥25.00%, and ≥44.44%, respectively. BRD2, BRD3, and BRD4 and their neighboring genes form a complex network of interactions mainly through co-expression, physical interactions, and shared protein domains. Molecular functions related to BRD2, BRD3, and BRD4 and their neighboring genes mainly include protein-macromolecule adaptor activity, cell adhesion molecule binding, and aromatase activity. Chemokine signaling pathway, thiamine metabolism, and olfactory transduction were found to be enriched as per the KEGG pathway analysis. SP1, NPM1, STAT3, and TP53 are key transcription factors for BRD2, BRD4, and their neighboring genes. MiR-142-3P, miR-484, and miR-519C were the main miRNA targets of BRD2, BRD3, BRD4, and their neighboring genes. We analyzed the mRNA sequencing data from 79 patients with ACC and found that ZSCAN12, DHX16, PRPF4B, EHMT1, CDK5RAP2, POMT1, WIZ, ZNF543, and AKAP8 were the top nine genes whose expression were positively associated with BRD2, BRD3, and BRD4 expression. The expression level of BRD2, BRD3, and BRD4 positively correlated with B cell and dendritic cell infiltration levels. BRD4-targeted drug PFI-1 and (BRD2, BRD3, and BRD4)-targeted drug I-BET-151 may have good inhibitory effects on the SW13 cell line. Conclusions: The findings of this study provide a partial basis for the role of BRD2, BRD3, and BRD4 in the occurrence and development of ACC. In addition, this study also provides new potential therapeutic targets for ACC, which can serve as a reference for future basic and clinical research.


Subject(s)
Adrenal Cortex Neoplasms , Adrenocortical Carcinoma , MicroRNAs , Humans , Nuclear Proteins/genetics , Gene Regulatory Networks , Transcription Factors/genetics , Transcription Factors/metabolism , Protein Domains , Adrenocortical Carcinoma/genetics , Adrenal Cortex Neoplasms/drug therapy , Adrenal Cortex Neoplasms/genetics , Prognosis , Nerve Tissue Proteins/genetics , Cell Cycle Proteins/genetics , Kruppel-Like Transcription Factors/genetics
13.
Clin Sci (Lond) ; 137(6): 435-452, 2023 03 31.
Article in English | MEDLINE | ID: mdl-36815438

ABSTRACT

Cisplatin-induced nephrotoxicity is the main adverse effect of cisplatin-based chemotherapy and highly limits its clinical use. DMXAA, a flavonoid derivative, is a promising vascular disrupting agent and known as an agonist of STING. Although cGAS-STING activation has been demonstrated to mediate cisplatin-induced acute kidney injury (AKI), the role of DMXAA in this condition is unclear. Here, we defined an unexpected and critical role of DMXAA in improving renal function, ameliorating renal tubular injury and cell apoptosis, and suppressing inflammation in cisplatin-induced AKI. Moreover, we confirmed that DMXAA combated AKI in a STING-independent manner, as evidenced by its protective effect in STING global knockout mice subjected to cisplatin. Furthermore, we compared the role of DMXAA with another STING agonist SR717 in cisplatin-treated mice and found that DMXAA but not SR717 protected animals against AKI. To better evaluate the role of DMXAA, we performed transcriptome analyses and observed that both inflammatory and metabolic pathways were altered by DMXAA treatment. Due to the established role of metabolic disorders in AKI, which contributes to kidney injury and recovery, we also performed metabolomics using kidney tissues from cisplatin-induced AKI mice with or without DMXAA treatment. Strikingly, our results revealed that DMXAA improved the metabolic disorders in kidneys of AKI mice, especially regulated the tryptophan metabolism. Collectively, therapeutic administration of DMXAA ameliorates cisplatin-induced AKI independent of STING, suggesting a promising potential for preventing nephrotoxicity induced by cisplatin-based chemotherapy.


Subject(s)
Acute Kidney Injury , Xanthones , Mice , Animals , Cisplatin/adverse effects , Acute Kidney Injury/chemically induced , Acute Kidney Injury/drug therapy , Acute Kidney Injury/prevention & control , Xanthones/metabolism , Xanthones/pharmacology , Xanthones/therapeutic use , Kidney/metabolism , Apoptosis , Mice, Inbred C57BL
14.
Cell Mol Gastroenterol Hepatol ; 15(2): 327-354, 2023.
Article in English | MEDLINE | ID: mdl-36272708

ABSTRACT

BACKGROUND & AIMS: Aflatoxin exposure increases the risk for hepatocellular carcinoma (HCC) in hepatitis B virus (HBV)-infected individuals, particularly males. We investigated sex-based differences in the HCC genome and antitumor immunity. METHODS: Whole-genome, whole-exome, and RNA sequencing were performed on 101 HCC patient samples (47 males, 54 females) that resulted from HBV infection and aflatoxin exposure from Qidong. Androgen on the expression of aflatoxin metabolism-related genes and nonhomologous DNA end joining (NHEJ) factors were examined in HBV-positive HCC cell lines, and further tested in tumor-bearing syngeneic mice. RESULTS: Qidong HCC differed between males and females in genomic landscape and transcriptional dysfunction pathways. Compared with females, males expressed higher levels of aflatoxin metabolism-related genes, such as AHR and CYP1A1, and lower levels of NHEJ factors, such as XRCC4, LIG4, and MRE11, showed a signature of up-regulated type I interferon signaling/response and repressed antitumor immunity. Treatment with AFB1 in HBV-positive cells, the addition of 2 nmol/L testosterone to cultures significantly increased the expression of aflatoxin metabolism-related genes, but reduced NHEJ factors, resulting in more nuclear DNA leakage into cytosol to activate cGAS-STING. In syngeneic tumor-bearing mice that were administrated tamoxifen daily via oral gavage, favorable androgen signaling repressed NHEJ factor expression and activated cGAS-STING in tumors, increasing T-cell infiltration and improving anti-programmed cell death protein 1 treatment effect. CONCLUSIONS: Androgen signaling in the context of genotoxic stress repressed DNA damage repair. The alteration caused more nuclear DNA leakage into cytosol to activate the cGAS-STING pathway, which increased T-cell infiltration into tumor mass and improved anti-programmed cell death protein 1 immunotherapy in HCCs.


Subject(s)
Aflatoxins , Carcinoma, Hepatocellular , Hepatitis B , Liver Neoplasms , Animals , Female , Male , Mice , Androgens , Carcinoma, Hepatocellular/pathology , Carcinoma, Hepatocellular/virology , Genomics , Hepatitis B/complications , Hepatitis B/genetics , Hepatitis B virus/genetics , Liver Neoplasms/pathology , Liver Neoplasms/virology , Sex Characteristics , Humans
15.
Front Genet ; 14: 1326737, 2023.
Article in English | MEDLINE | ID: mdl-38343446

ABSTRACT

Background: Tousled-like kinase 2 (TLK2) is integral to DNA repair, replication, and cell cycle regulation, crucial for maintaining genome stability and integrity. However, the expression and prognostic value of TLK2 in hepatitis B viral (HBV) -related hepatocellular carcinoma (HCC) remains unclear. Methods: We examined TLK2 expression and prognostic implications in pan-cancer by using diverse databases. Subsequently, TLK2 expression in HBV-related HCC tissues and adjacent tissues was assessed using quantitative real-time PCR and immunohistochemistry. The prognostic value of TLK2 was assessed through ROC curves, time-dependent ROC curves, Cox regression, Kaplan-Meier curve, and decision curve analysis. Additionally, analyses of immune infiltration, protein-protein interactions, key molecules of tumor-related signaling pathways, molecular subtypes, and TLK2-associated differentially expressed genes (DEGs) were conducted, along with GO/KEGG and GSEA enrichment analyses. Results: TLK2 expression was significantly higher in HCC tissues compared to adjacent tissues and correlated with gender, AFP levels, albumin-bilirubin (ALBI) grade, microvascular invasion (MVI), maximum tumor diameter, tumor number, and TNM stage. TLK2 overexpression emerged as an independent risk factor for overall survival (OS) and recurrence-free survival (RFS) in HBV-related HCC patients. An integrated OS nomogram model, incorporating TLK2, age, ALBI grade, MVI, and tumor number, displayed enhanced prognostic capability (C-index: 0.765, 95% CI: 0.732-0.798) in predicting OS and has a higher net benefit than the TNM stage. Moreover, TLK2 expression correlated closely with immune cell infiltration and key molecules of signaling pathways. Functional enrichment analyses highlighted significant associations with DNA duplex unwinding, double-strand break repair, DNA replication, cell cycle, E2F targets, G2M checkpoint, and MYC targets V1. Conclusion: TLK2 is notably overexpressed in HBV-related HCC and emerges as a promising prognostic biomarker, necessitating further validation.

16.
Infect Genet Evol ; 106: 105389, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36460278

ABSTRACT

BACKGROUND: The expression of m6A-related genes and their significance in COVID-19 patients are still unknown. METHODS: The GSE177477 and GSE157103 datasets of the Gene Expression Omnibus were used to extract RNA-seq data. The expression of 26 m6A-related genes and immune cell infiltration in COVID-19 patients were analyzed. Finally, we built and validated a nomogram model to predict the risk of COVID-19 infection. RESULTS: There were significant differences in 11 m6A regulatory factors between patients with COVID-19 and healthy individuals. The classification of disease subtypes based on m6A-related gene levels can be distinguished. COVID-19 patients in GSE177477 were classified into two categories based on m6A-related genes. The patients in cluster A were all symptomatic, while those in cluster B were asymptomatic. A significant correlation was also found between immune cells and m6A-related genes. Finally, seven m6A-related disease-characteristic genes, HNRNPA2B1, ELAVL1, RBM15, RBM15B, YTHDC1, HNRNPC, and WTAP, were screened to construct a nomogram model for predicting risk. The calibration curve, decision curve analysis, and clinical impact curve analysis were used to show that the nomogram model was effective and had a high net efficacy for risk prediction. CONCLUSIONS: m6A-related genes were correlated with immune cells. The nomogram model effectively predicted COVID-19 risk. Moreover, m6A-related genes may be associated with the presence or absence of symptoms in COVID-19 patients.


Subject(s)
COVID-19 , Humans , COVID-19/genetics , RNA-Seq , Health Status
17.
J Multidiscip Healthc ; 15: 2461-2472, 2022.
Article in English | MEDLINE | ID: mdl-36320552

ABSTRACT

Purpose: The 7-methylguanosine (m7G)-related genes were used to identify the clinical severity and prognosis of patients with coronavirus disease 2019 (COVID-19) and to identify possible therapeutic targets. Patients and Methods: The GSE157103 dataset provides the transcriptional spectrum and clinical information required to analyze the expression of m7G-related genes and the disease subtypes. R language was applied for immune infiltration analysis, functional enrichment analysis, and nomogram model construction. Results: Most m7G-related genes were up-regulated in COVID-19 and were closely related to immune cell infiltration. Disease subtypes were grouped using a clustering algorithm. It was found that the m7G-cluster B was associated with higher immune infiltration, lower mechanical ventilation, lower intensive care unit (ICU) status, higher ventilator-free days, and lower m7G scores. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis showed that differentially expressed genes (DEGs) between m7G-cluster A and B were enriched in viral infection and immune-related aspects, including COVID-19 infection; Th17, Th1, and Th2 cell differentiation, and human T-cell leukemia virus 1 infection. Finally, through machine learning, six disease characteristic genes, NUDT4B, IFIT5, LARP1, EIF4E, LSM1, and NUDT4, were screened and used to develop a nomogram model to estimate disease risk. Conclusion: The expression of most m7G genes was higher in COVID-19 patients compared with that in non-COVID-19 patients. The m7G-cluster B showed higher immune infiltration and milder symptoms. The predictive nomogram based on the six m7G genes can be used to accurately assess risk.

18.
Front Immunol ; 13: 911806, 2022.
Article in English | MEDLINE | ID: mdl-36211390

ABSTRACT

CRF07_BC is one of the most prevalent HIV-1 strains in China, which contributes over one-third of the virus transmissions in the country. In general, CRF07_BC is associated with slower disease progression, while the underlying mechanisms remain unclear. Our study focused on envelope proteins (Env) and its V3 loop which determine viral binding to co-receptors during infection of cells. We studied a large dataset of 3,937 env sequences in China and found that CRF07_BC had a unique profile of predominantly single CCR5 tropism compared with CCR5 and CXCR4 dual tropisms in other HIV-1 subtypes. The percentages of the CXCR4-tropic virus in B (3.7%) and CRF01_AE (10.4%) infection are much higher than that of CRF07_BC (0.1%), which is supported by median false-positive rates (FPRs) of 69.8%, 25.5%, and 13.4% for CRF07_BC, B, and CRF01_AE respectively, with a cutoff FPR for CXCR4-tropic at 2%. In this study, we identified the first pure CXCR4-tropic virus from one CRF07_BC-infected patient with an extremely low CD4+T cell count (7 cells/mm3). Structural analysis found that the V3 region of this virus has the characteristic 7T and 25R and a substitution of conserved "GPGQ" crown motif for "GPGH". This study provided compelling evidence that CRF07_BC has the ability to evolve into CXCR4 strains. Our study also lay down the groundwork for studies on tropism switch, which were commonly done for other HIV-1 subtypes, for the long-delayed CRF07_BC.


Subject(s)
HIV Infections , HIV-1 , China , Gene Products, env , HIV Infections/epidemiology , HIV-1/genetics , HIV-1/metabolism , Humans , Receptors, CCR5/metabolism , Receptors, CXCR4 , Virus Attachment
19.
Parasit Vectors ; 15(1): 284, 2022 Aug 06.
Article in English | MEDLINE | ID: mdl-35933421

ABSTRACT

BACKGROUND: Toxoplasma gondii has been reported to be associated with higher mortality in patients with schizophrenia. This study aimed to explore the relationship between T. gondii infection and 25-year mortality based on data from the Third National Health and Nutrition Examination Survey (NHANES III) database. METHODS: Cases with serum T. gondii antibody test results were included in this study and the corresponding mortality dataset was obtained from the US National Center for Health Statistics (NCHS). Propensity score matching (PSM) was used to match age and sex between groups. The Cox proportional hazards model was used to evaluate the effect of T. gondii infection on mortality. RESULTS: A total of 14,181 cases were included in the analysis, of which 3831 (27.0%) were seropositive for T. gondii antibody. The median follow-up time of the whole cohort was 22.5 (interquartile range 16.3, 24.5) years. A total of 5082 deaths were observed in this cohort, a mortality rate of 35.8%. All-cause mortality was significantly higher in the seropositive group than in the seronegative group (50.0% vs 30.6%, P < 0.001). Kaplan-Meier analysis showed a significant difference in the survival time between two groups before and after PSM. Multivariate analysis showed that T. gondii infection was independently associated with higher all-cause mortality after adjusting for potential confounders. CONCLUSIONS: Toxoplasma gondii infection is associated with higher mortality in general population.


Subject(s)
Toxoplasma , Toxoplasmosis , Antibodies, Protozoan , Follow-Up Studies , Humans , Nutrition Surveys , Proportional Hazards Models , Risk Factors , Seroepidemiologic Studies
20.
Infect Drug Resist ; 15: 4541-4546, 2022.
Article in English | MEDLINE | ID: mdl-35996722

ABSTRACT

Purpose: The Chinese government has authorized the emergency use of an inactivated vaccine for COVID-19 in children and adolescents aged 3 to 17 years. This study aimed to investigate parents' attitudes towards vaccinating their children against COVID-19 and influencing factors. Patients and Methods: Through an online questionnaire survey, we collected self-reported children's demographic characteristics, physical conditions and parents' attitudes towards COVID-19 vaccination for children. The parents in the unwilling group received online consultation about the benefits and risks of COVID-19 vaccine and were asked to complete the questionnaire again. Results: A total of 868 participants were recruited from July 2021 to August 2021 in Nanjing, China. Overall, 76.0% of parents were willing to accept vaccination for children. Parents' willingness increased with children's age (P=0.018) and height (P=0.034), but decreased if the children fell sick within previous one month (P=0.030). Most of the unwilling parents gave a higher score to the risk of vaccination (53.76 VS 40.18). Unsafety (63.8%) and unfamiliarity (24.0%) were their major concerns. After consultation with a health worker, 24% of the unwilling parents turned willing. Conclusion: Children's age and recent physical condition are related to parents' attitudes towards vaccination for children against COVID-19. The major concerns of parents are unsafety and unfamiliarity. Parents view health workers as a reliable source of vaccine information. A successful consultation with health workers to understand the benefits and risks of vaccination can increase parents' willingness. This study provides insight into parents' attitudes towards vaccination for children against COVID-19 in China and related influencing factors. Our findings could be referenced in establishing policies for vaccinating children against COVID-19 in China.

SELECTION OF CITATIONS
SEARCH DETAIL