Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 82
Filter
1.
Nat Commun ; 15(1): 4813, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38844461

ABSTRACT

Porcine Reproductive and Respiratory Syndrome Virus (PRRSV) poses a major threat to the global swine industry, yet effective prevention and control measures remain elusive. This study unveils Nitazoxanide (NTZ) as a potent inhibitor of PRRSV both in vitro and in vivo. Through High-Throughput Screening techniques, 16 potential anti-PRRSV compounds are identified from a library comprising FDA-approved and pharmacopeial drugs. We show that NTZ displays strong efficacy in reducing PRRSV proliferation and transmission in a swine model, alleviating viremia and lung damage. Additionally, Tizoxanide (TIZ), the primary metabolite of NTZ, has been identified as a facilitator of NMRAL1 dimerization. This finding potentially sheds light on the underlying mechanism contributing to TIZ's role in augmenting the sensitivity of the IFN-ß pathway. These results indicate the promising potential of NTZ as a repurposed therapeutic agent for Porcine Reproductive and Respiratory Syndrome (PRRS). Additionally, they provide valuable insights into the antiviral mechanisms underlying NTZ's effectiveness.


Subject(s)
Antiviral Agents , High-Throughput Screening Assays , Nitro Compounds , Porcine Reproductive and Respiratory Syndrome , Porcine respiratory and reproductive syndrome virus , Thiazoles , Animals , Porcine respiratory and reproductive syndrome virus/drug effects , Nitro Compounds/pharmacology , Swine , Antiviral Agents/pharmacology , High-Throughput Screening Assays/methods , Porcine Reproductive and Respiratory Syndrome/drug therapy , Porcine Reproductive and Respiratory Syndrome/virology , Thiazoles/pharmacology , Virus Replication/drug effects , Cell Line , Viremia/drug therapy , Viremia/virology
2.
Front Vet Sci ; 11: 1372032, 2024.
Article in English | MEDLINE | ID: mdl-38681852

ABSTRACT

Porcine reproductive and respiratory syndrome virus (PRRSV) remains one of the major threats to swine industry, resulting in huge economic losses worldwide. Currently, PRRSV has diversified into multiple lineages with characteristics of extensive recombination in China. In this research, three virus strains were isolated and four virus whole genome sequences were generated and analyzed from clinical samples collected in Gansu province of China in 2023. The four virus strains were designated GSTS4-2023, GSLX2-2023, GSFEI2-2023 and GSBY4-2023. Phylogenetic analysis based on ORF5 sequences showed that GSTS4-2023, GSLX2-2023, GSFEI2-2023 and GSBY4-2023 shared 91.7, 91.2, 93.2 and 92.9% homology with NADC30 strain respectively, and belonged to lineage 1 of PRRSV-2. In addition, one amino acid deletion was observed at position 33 in ORF5 of GSTS4-2023, GSLX2-2023 and GSFEI2-2023. Moreover, amino acid alignment of the four strains showed a typical discontinuous 131-amino acid (aa) deletion in NSP2 for NADC30-like virus strains. Recombination analysis revealed that all four strains originated from NADC30 (lineage 1), with their minor parents coming from JXA1-like strains (lineage 8), VR-2332-like strains (lineage5) and QYYZ-like strains (lineage3). Finally, the three isolated virus strains, GSTS4-2023, GSLX2-2023 and GSFEI2-2023 showed relatively low levels of replication in cell culture. Our findings provide important implications for the field epidemiology of PRRSV.

3.
Antiviral Res ; 225: 105868, 2024 May.
Article in English | MEDLINE | ID: mdl-38490343

ABSTRACT

Porcine Reproductive and Respiratory Syndrome (PRRS) presents a formidable viral challenge in swine husbandry. Confronting the constraints of existing veterinary pharmaceuticals and vaccines, this investigation centers on Caffeic Acid Phenethyl Ester (CAPE) as a prospective clinical suppressant for the Porcine Reproductive and Respiratory Syndrome Virus (PRRSV). The study adopts an integrated methodology to evaluate CAPE's antiviral attributes. This encompasses a dual-phase analysis of CAPE's interaction with PRRSV, both in vitro and in vivo, and an examination of its influence on viral replication. Varied dosages of CAPE were subjected to empirical testing in animal models to quantify its efficacy in combating PRRSV infections. The findings reveal a pronounced antiviral potency, notably in prophylactic scenarios. As a predominant component of propolis, CAPE stands out as a promising candidate for clinical suppression, showing exceptional effectiveness in pre-exposure prophylaxis regimes. This highlights the potential of CAPE in spearheading cutting-edge strategies for the management of future PRRSV outbreaks.


Subject(s)
Caffeic Acids , Phenylethyl Alcohol/analogs & derivatives , Porcine Reproductive and Respiratory Syndrome , Porcine respiratory and reproductive syndrome virus , Veterinary Drugs , Swine , Animals , Prospective Studies , Veterinary Drugs/pharmacology , Virus Replication , Antiviral Agents/pharmacology
4.
PLoS Pathog ; 19(11): e1011811, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37983290

ABSTRACT

Foot-and-mouth disease virus (FMDV) serotype A is antigenically most variable within serotypes. The structures of conserved and variable antigenic sites were not well resolved. Here, a historical A/AF72 strain from A22 lineage and a latest A/GDMM/2013 strain from G2 genotype of Sea97 lineage were respectively used as bait antigen to screen single B cell antibodies from bovine sequentially vaccinated with A/WH/CHA/09 (G1 genotype of Sea97 lineage), A/GDMM/2013 and A/AF72 antigens. Total of 39 strain-specific and 5 broad neutralizing antibodies (bnAbs) were isolated and characterized. Two conserved antigenic sites were revealed by the Cryo-EM structures of FMDV serotype A with two bnAbs W2 and W125. The contact sites with both VH and VL of W125 were closely around icosahedral threefold axis and covered the B-C, E-F, and H-I loops on VP2 and the B-B knob and H-I loop on VP3; while contact sites with only VH of W2 concentrated on B-B knob, B-C and E-F loops on VP3 scattering around the three-fold axis of viral particle. Additional highly conserved epitopes also involved key residues of VP158, VP1147 and both VP272 / VP1147 as determined respectively by bnAb W153, W145 and W151-resistant mutants. Furthermore, the epitopes recognized by 20 strain-specific neutralization antibodies involved the key residues located on VP3 68 for A/AF72 (11/20) and VP3 175 position for A/GDMM/2013 (9/19), respectively, which revealed antigenic variation between different strains of serotype A. Analysis of antibody-driven variations on capsid of two virus strains showed a relatively stable VP2 and more variable VP3 and VP1. This study provided important information on conserve and variable antigen structures to design broad-spectrum molecular vaccine against FMDV serotype A.


Subject(s)
Foot-and-Mouth Disease Virus , Foot-and-Mouth Disease , Animals , Cattle , Antibodies, Neutralizing , Serogroup , Antibodies, Viral , Broadly Neutralizing Antibodies/genetics , Epitopes , Capsid Proteins/genetics , Antibodies, Monoclonal
6.
J Virol ; 97(7): e0068623, 2023 07 27.
Article in English | MEDLINE | ID: mdl-37367489

ABSTRACT

Foot-and-mouth disease (FMD) is an acute, highly contagious disease of cloven-hoofed animals caused by FMD virus (FMDV). Currently, the molecular pathogenesis of FMDV infection remains poorly understood. Here, we demonstrated that FMDV infection induced gasdermin E (GSDME)-mediated pyroptosis independent of caspase-3 activity. Further studies showed that FMDV 3Cpro cleaved porcine GSDME (pGSDME) at the Q271-G272 junction adjacent to the cleavage site (D268-A269) of porcine caspase-3 (pCASP3). The inhibition of enzyme activity of 3Cpro failed to cleave pGSDME and induce pyroptosis. Furthermore, overexpression of pCASP3 or 3Cpro-mediated cleavage fragment pGSDME-NT was sufficient to induce pyroptosis. Moreover, the knockdown of GSDME attenuated the pyroptosis caused by FMDV infection. Our study reveals a novel mechanism of pyroptosis induced by FMDV infection and might provide new insights into the pathogenesis of FMDV and the design of antiviral drugs. IMPORTANCE Although FMDV is an important virulent infectious disease virus, few reports have addressed its relationship with pyroptosis or pyroptosis factors, and most studies focus on the immune escape mechanism of FMDV. GSDME (DFNA5) was initially identified as being associated with deafness disorders. Accumulating evidence indicates that GSDME is a key executioner for pyroptosis. Here, we first demonstrate that pGSDME is a novel cleavage substrate of FMDV 3Cpro and can induce pyroptosis. Thus, this study reveals a previously unrecognized novel mechanism of pyroptosis induced by FMDV infection and might provide new insights into the design of anti-FMDV therapies and the mechanisms of pyroptosis induced by other picornavirus infections.


Subject(s)
Foot-and-Mouth Disease Virus , Foot-and-Mouth Disease , Animals , Swine , Foot-and-Mouth Disease Virus/metabolism , Caspase 3/metabolism , Cysteine Endopeptidases/metabolism , Gasdermins , Pyroptosis , Viral Proteins/metabolism
7.
Vaccines (Basel) ; 11(5)2023 May 04.
Article in English | MEDLINE | ID: mdl-37243045

ABSTRACT

Heparin-binding hemagglutinin (HBHA) and M. tuberculosis pili (MTP) are important antigens on the surface of Mycobacterium tuberculosis. To display these antigens effectively, the fusion protein HBHA-MTP with a molecular weight of 20 kD (L20) was inserted into the receptor-binding hemagglutinin (HA) fragment of influenza virus and was expressed along with matrix protein M1 in Sf9 insect cells to generate influenza virus-like particles (LV20 in short). The results showed that the insertion of L20 into the envelope of the influenza virus did not affect the self-assembly and morphology of LV20 VLPs. The expression of L20 was successfully verified by transmission electron microscopy. Importantly, it did not interfere with the immunogenicity reactivity of LV20 VLPs. We demonstrated that LV20 combined with the adjuvant composed of DDA and Poly I: C (DP) elicited significantly higher antigen-specific antibodies and CD4+/CD8+ T cell responses than PBS and BCG vaccination in mice. It suggests that the insect cell expression system is an excellent protein production system, and LV20 VLPs could be a novel tuberculosis vaccine candidate for further evaluation.

8.
Microbiol Spectr ; 11(3): e0459922, 2023 06 15.
Article in English | MEDLINE | ID: mdl-37036366

ABSTRACT

Senecavirus A (SVA) is an emerging viral pathogen related to vesicular disease and neonatal mortality in swine, which results in enormous economic losses to the global swine industry. The clinical signs of SVA are indistinguishable from those of other vesicular diseases, such as foot-and-mouth disease, which is an economically devastating animal disease. Therefore, development of a rapid, sensitive, and specific diagnostic method for the detection of SVA infection is critical for the prevention and control of SVA and would help to rule out other exotic diseases. In this study, two whole-porcine anti-SVA antibodies (1M5 and 1M25) were produced using single B cell antibody technology. 1M5 and 1M25 possessed neutralizing activity against SVA but recognized different conformational epitopes that depended on the intact virion. Using 1M5 as the capture antibody and biotinylated 1M25 as the detection antibody, a reliable and rapid competitive enzyme-linked immunosorbent assay for detecting neutralizing antibodies (NAC-ELISA) against SVA was developed. Receiver-operating characteristic curve analysis showed that the sensitivity and specificity of the assay were 98.11% and 100%, respectively, with a cutoff percent inhibition value of 45%. The NAC-ELISA was specific for detecting SVA-specific antibodies, without cross-reactivity to other virus-infected sera. The results of the NAC-ELISA showed a strong agreement with the results of the virus neutralization test. Therefore, the NAC-ELISA developed in this study represents a sensitive, specific, and reliable tool for the detection of SVA-specific antibodies, which is applicable for serodiagnosis and serological surveillance of SVA and is conducive to the prevention and control of SVA. IMPORTANCE Senecavirus A (SVA) is an emerging picornavirus related to vesicular disease and neonatal mortality in swine, which results in enormous economic losses worldwide. Additionally, the clinical characteristics of the disease are indistinguishable from those of other vesicular diseases, such as foot-and-mouth disease. Therefore, developing tools for rapidly and accurately detecting SVA infection is critical and urgent. In this study, two porcine-derived monoclonal antibodies against SVA were generated, and a competitive ELISA for the detection of neutralizing antibodies (NAC-ELISA) against SVA was successfully developed using these two porcine monoclonal antibodies. The NAC-ELISA was SVA specific with no cross-reactivity to other related pathogens and had high sensitivity, specificity, and reproducibility for detecting SVA-specific antibody. Therefore, the NAC-ELISA developed in this study may be of great value as a simple and reliable tool for serodiagnosis or surveillance of SVA and may facilitate the prevention and control of SVA.


Subject(s)
Foot-and-Mouth Disease , Swine Diseases , Animals , Swine , Antibodies, Neutralizing , Antibodies, Monoclonal , Reproducibility of Results , Antibodies, Viral , Enzyme-Linked Immunosorbent Assay/methods , Swine Diseases/epidemiology
9.
J Virol Methods ; 314: 114676, 2023 04.
Article in English | MEDLINE | ID: mdl-36669654

ABSTRACT

Foot-and-mouth disease (FMD) is a highly contagious and economically devastating disease of cloven-hoofed animals. Vaccination and surveillance against non-structure protein (NSP) are the most efficacious and cost-effective strategy to control this disease. Therefore, vaccine purity control is vital for successful prevention. Currently, vaccine purity is tested by an in-vivo test that recommended in the World Organization for Animal Health (WOAH), but it is time consuming and costly. Herein, we develop a double-antibody sandwich enzyme-linked immunosorbent assay (DAS-ELISA) for quantitative detection of residual NSPs in inactivated FMD virus (FMDV) vaccines. In this assay, the monoclonal antibody 3A24 was selected as capture antibody and biotinylated 3B4B1 (Biotin-3B4B1) as detection antibody. A standard curve was developed using the NSP 3AB concentration versus OD value with the linear range of concentration of 2.5-160 ng/mL. The lowest limit of detection was 2.5 ng/mL. In addition, we determined 2.5 ng/mL of NSP as an acceptable threshold value of FMD vaccine purity using a dose-response experiment in cattle. The DAS-ELISA combined with the threshold value of FMD vaccine purity could provide a quick and simple tool for evaluation the antigenic purity of FMD vaccine during the manufacturing process.


Subject(s)
Foot-and-Mouth Disease Virus , Foot-and-Mouth Disease , Viral Vaccines , Animals , Cattle , Vaccines, Inactivated , Antibodies, Viral , Foot-and-Mouth Disease/diagnosis , Foot-and-Mouth Disease/prevention & control , Enzyme-Linked Immunosorbent Assay/veterinary
10.
Appl Microbiol Biotechnol ; 107(2-3): 639-650, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36586016

ABSTRACT

OBJECTIVE: Foot-and-mouth disease (FMD) and Peste des petits ruminant disease (PPR) are acute and severe infectious diseases of sheep and are listed as animal diseases for compulsory immunization. However, there is no dual vaccine to prevent these two diseases. The Modified Vaccinia virus Ankara strain (MVA) has been widely used in the construction of recombinant live vector vaccine because of its large capacity of foreign gene, wide host range, high safety, and immunogenicity. In this study, MVA-GFP recombinant virus skeleton was used to construct dual live vector vaccines against FMD and PPR. METHODS: The recombinant plasmid pUC57-FMDV P1-2A3CPPRV FH was synthesized and transfected into MVA-GFP infected CEF cells for homologous recombination. RESULTS: The results showed that a recombinant virus without fluorescent labeling was obtained after multiple rounds of plaque screening. The recombinant virus successfully expressed the target proteins, and the empty capsid of FMDV could be observed by transmission electron microscope (TME), and the expression levels of foreign proteins (VP1 and VP3) detected by ELISA were like those detected in FMDV-infected cells. This study laid the foundation for the successful construction of a live vector vaccine against FMD and PPR. KEY POINTS: • A recombinant MVA expressing FMDVP12A3C and PRRV HF proteins • Both the FMDV and PRRV proteins inserted into the virus were expressed • The proteins expressed by the recombinant poxvirus were assembled into VLPs.


Subject(s)
Foot-and-Mouth Disease Virus , Foot-and-Mouth Disease , Peste-des-Petits-Ruminants , Viral Vaccines , Sheep , Animals , Peste-des-Petits-Ruminants/prevention & control , Antibodies, Viral , Viral Proteins/genetics , Foot-and-Mouth Disease Virus/genetics , Vaccines, Synthetic/genetics , Viral Vaccines/genetics
11.
Vet Microbiol ; 275: 109595, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36334527

ABSTRACT

MicroRNAs are small non-coding RNA that regulate host anti-viral immune response. In this study, we used high-throughput sequencing to identify miRNAs that were differentially expressed upon PRRSV infection in porcine alveolar macrophages. We observed that the expression level of miR-122 was decreased upon PRRSV infection. Over-expression of miR-122 remarkably suppressed PRRSV replication, while blockage of endogenous miR-122 enhanced PRRSV replication. Moreover, over-expression of miR-122 reduced the protein level of porcine suppressor of cytokine signaling 3 (SOCS3), a negative regulator of JAK-STAT signaling, resulting in enhanced production of type Ⅰ IFN. Further analysis revealed that miR-122 decreased the expression of SOCS3 at the post-transcription level by targeting the 3' UTR region of SOCS3 mRNA. In conclusion, this study demonstrates that the expression of miR-122 was reduced during PRRSV infection. miR-122 impaired PRRSV replication by promoting the production of type I interferon. Our study may provide new insights into understanding PRRSV immune evasion mechanisms.


Subject(s)
MicroRNAs , Porcine Reproductive and Respiratory Syndrome , Porcine respiratory and reproductive syndrome virus , Swine Diseases , Swine , Animals , Porcine respiratory and reproductive syndrome virus/genetics , Porcine respiratory and reproductive syndrome virus/metabolism , Down-Regulation , Cell Line , Virus Replication/physiology , MicroRNAs/genetics , MicroRNAs/metabolism , Macrophages, Alveolar , 3' Untranslated Regions/genetics , Suppressor of Cytokine Signaling Proteins/genetics , Porcine Reproductive and Respiratory Syndrome/genetics , Swine Diseases/genetics
12.
Sheng Wu Gong Cheng Xue Bao ; 38(8): 2872-2882, 2022 Aug 25.
Article in Chinese | MEDLINE | ID: mdl-36002416

ABSTRACT

Porcine reproductive and respiratory syndrome (PRRS) is a highly contagious disease caused by porcine reproductive and respiratory syndrome virus (PRRSV), which causes great economic losses. At the moment, no effective neutralizing antibody is available for scientific research and treatment. Therefore, developing a method for screening the neutralizing monoclonal antibodies is of great significance for the prevention and treatment of PRRSV and the screening of antigen sites. Monoclonal antibodies have been widely used in the treatment and diagnosis of many human and animal diseases. Therefore, screening effective neutralizing antibodies for different pathogens is an urgent task. Among the methods for monoclonal antibody screening, B cell immortalization is an effective method to obtain neutralizing monoclonal antibody. Specifically, in this study, the bcl-6 and bcl-xl genes were connected by f2a and then the yielded product was ligated to a vector for retrovirus packaging. The swine lymphocytes immunized with PRRSV were infected the yielded mature viruses and cultured in the complete medium containing CD40L and IL21 cytokines. Then, CD21 was used as the marker to screen B cells with the magnetic bead method. Finally, monoclonal B cells were obtained and the secretion of antibodies was tested. The results showed that the plasmid, either being transfected alone or with the packaged plasmids, could be expressed, and that the packaged retrovirus could infect the cells. Moreover, the infected lymphocytes secreted antibodies, so did the screened B cells. Therefore, the method for screening monoclonal antibody against PRRSV was successfully established.


Subject(s)
Porcine Reproductive and Respiratory Syndrome , Porcine respiratory and reproductive syndrome virus , Animals , Antibodies, Monoclonal , Antibodies, Neutralizing , Antibodies, Viral , Humans , Porcine Reproductive and Respiratory Syndrome/prevention & control , Porcine respiratory and reproductive syndrome virus/genetics , Swine
13.
Vet Res ; 53(1): 56, 2022 Jul 08.
Article in English | MEDLINE | ID: mdl-35804412

ABSTRACT

Foot-and-mouth disease (FMD) remains a very serious barrier to agricultural development and the international trade of animals and animal products. Recently, serotype O has been the most prevalent FMDV serotype in China, and it has evolved into four different lineages: O/SEA/Mya-98, O/ME-SA/PanAsia, O/ME-SA/Ind-2001 and O/Cathay. PanAsia-2, belonging to the O/ME-SA topotype, is prevalent in neighbouring countries and poses the risk of cross-border spread in China. This study aimed to develop a promising vaccine candidate strain that can not only provide the best protection against all serotype O FMDVs circulating in China but also be used as an emergency vaccine for the prevention and control of transboundary incursion of PanAsia-2. Here, two chimeric FMDVs (rHN/TURVP1 and rHN/NXVP1) featuring substitution of VP1 genes of the O/TUR/5/2009 vaccine strain (PanAsia-2) and O/NXYCh/CHA/2018 epidemic strain (Mya98) were constructed and evaluated. The biological properties of the two chimeric FMDVs were similar to those of the wild-type (wt) virus despite slight differences in plaque sizes observed in BHK-21 cells. The structural protein-specific antibody titres induced by the rHN/TURVP1 and wt virus vaccines in pigs and cows were higher than those induced by the rHN/NXVP1 vaccine at 28-56 dpv. The vaccines prepared from the two chimeric viruses and wt virus all induced the production of protective cross-neutralizing antibodies against the viruses of the Mya-98, PanAsia and Ind-2001 lineages in pigs and cattle at 28 dpv; however, only the animals vaccinated with the rHN/TURVP1 vaccine produced a protective immune response to the field isolate of the Cathay lineage at 28 dpv, whereas the animals receiving the wt virus and the rHN/NXVP1 vaccines did not, although the wt virus and O/GXCX/CHA/2018 both belong to the Cathay topotype. This study will provide very useful information to help develop a potential vaccine candidate for the prevention and control of serotype O FMD in China.


Subject(s)
Cattle Diseases , Foot-and-Mouth Disease Virus , Foot-and-Mouth Disease , Viral Vaccines , Animals , Cattle , Cattle Diseases/prevention & control , Commerce , Foot-and-Mouth Disease/epidemiology , Foot-and-Mouth Disease Virus/genetics , Internationality , Serogroup , Swine
14.
J Clin Microbiol ; 60(4): e0214221, 2022 04 20.
Article in English | MEDLINE | ID: mdl-35254106

ABSTRACT

The level of neutralizing antibodies in vaccinated animals is directly related to their level of protection against a virus challenge. The virus neutralization test (VNT) is a "gold standard" method for detecting neutralizing antibodies against foot-and-mouth disease virus (FMDV). However, VNT requires high-containment facilities that can handle live viruses and is not suitable for large-scale serological surveillance. In this study, a bovine broadly neutralizing monoclonal antibody (W145) against FMDV serotype A was successfully produced using fluorescence-based single-B-cell antibody technology. Using biotinylated W145 as a detector antibody and another bovine cross-reactive monoclonal antibody, E32, which was produced previously as a capture antibody, a competitive enzyme-linked immunosorbent assay for the detection of neutralizing antibodies (NAC-ELISA) against FMDV serotype A was developed. The specificity and sensitivity of the assay were evaluated to be 99.04% and 100%, respectively. A statistically significant correlation (r = 0.9334, P < 0.0001) was observed between the NAC-ELISA titers and the VNT titers, suggesting that the NAC-ELISA could detect neutralizing antibodies against FMDV serotype A and could be used to evaluate protective immunity.


Subject(s)
Foot-and-Mouth Disease Virus , Foot-and-Mouth Disease , Animals , Antibodies, Monoclonal , Antibodies, Neutralizing , Antibodies, Viral , Cattle , Enzyme-Linked Immunosorbent Assay/methods , Foot-and-Mouth Disease/diagnosis , Foot-and-Mouth Disease/prevention & control , Humans , Serogroup
15.
Virol J ; 19(1): 40, 2022 03 05.
Article in English | MEDLINE | ID: mdl-35248059

ABSTRACT

BACKGROUND: Porcine reproductive and respiratory syndrome virus (PRRSV) is one of the most significant threats to the global swine industry. It is of great importance to understand viral-host interactions to develop novel antiviral strategies. Long non-coding RNAs (lncRNAs) have emerged as critical factors regulating host antiviral immune responses. However, lncRNAs participating in virus-host interactions during PRRSV infection remain largely unexplored. METHOD: RNA transcripts of porcine alveolar macrophages (PAMs) infected with two different PRRSV strains, GSWW/2015 and VR2332, at 24 h post-infection were sequenced by high-throughput sequencing. Four programs namely, CNCI, CPC, PFAM, and phyloCSF, were utilized to predict the coding potential of transcripts. mRNAs co-localized or co-expressed with differentially expressed lncRNAs were considered as their targets. Fuction of lncRNAs was predicted by GO and KEGG analysis of their target mRNAs. The effect of LNC_000397 on PRRSV replication was validated by knockdown its expression using siRNA. Target genes of LNC_000397 were identified by RNA-Sequencing and validated by RT-qPCR. RESULT: In this study, we analyzed lncRNA and mRNA expression profiles of PRRSV GSWW/2015 and VR2332 infected porcine alveolar macrophages. A total of 1,147 novel lncRNAs were characterized, and 293 lncRNAs were differentially expressed. mRNAs co-localized and co-expressed with lncRNAs were enriched in pathogen-infection-related biological processes such as Influenza A and Herpes simplex infection. Functional analysis revealed the lncRNA, LNC_000397, which was up-regulated by PRRSV infection, negatively regulated PRRSV replication. Knockdown of LNC_000397 significantly impaired expression of antiviral ISGs such as MX dynamin-like GTPase 1 (MX1), ISG15 Ubiquitin-like modifier (ISG15), and radical S-adenosyl methionine domain containing 2 (RSAD2). CONCLUSIONS: LNC_000397 negatively regulated PRRSV replication by inducing interferon-stimulated genes (ISGs) expression. Our study is the first report unveiling the role of host lncRNA in regulating PRRSV replication, which might be beneficial for the development of novel antiviral therapeutics.


Subject(s)
Porcine Reproductive and Respiratory Syndrome , Porcine respiratory and reproductive syndrome virus , RNA, Long Noncoding , Animals , Antiviral Agents/metabolism , Interferons/metabolism , Macrophages, Alveolar , Porcine Reproductive and Respiratory Syndrome/genetics , Porcine respiratory and reproductive syndrome virus/genetics , Porcine respiratory and reproductive syndrome virus/metabolism , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Swine , Virus Replication
16.
Sheng Wu Gong Cheng Xue Bao ; 38(1): 139-147, 2022 Jan 25.
Article in Chinese | MEDLINE | ID: mdl-35142125

ABSTRACT

The aim of this study was to refold the OvisAries leukocyte antigen (OLA) class Ⅰ protein with peptides derived from sheeppox virus (SPPV) to identify SPPV T cell epitopes. Two pairs of primers were designed based on the published sequence of a sheep major histocompatibility complex Ⅰ to amplify the heavy chain gene of OLA Ⅰ α-BSP and the light chain gene of OLA Ⅰ-ß2m. Both genes were cloned into a pET-28a(+) expression vector, respectively, and induced with ITPG for protein expression. After purification, the heavy chain and light chain proteins as well as peptides derived from SPPV were refolded at a ratio of 1:1:1 using a gradual dilution method. Molecular exclusion chromatography was used to test whether these peptides bind to the OLA Ⅰ complex. T-cell responses were assessed using freshly isolated PBMCs from immunized sheep through IFN-γ ELISPOT with peptides derived from SPPV protein. The results showed that the cloned heavy chain and light chain expressed sufficiently, with a molecular weight of 36.3 kDa and 16.7 kDa, respectively. The protein separated via a SuperdexTM 200 increase 10/300 GL column was collected and verified by SDS-PAGE after refolding. One SPPV CTL epitope was identified after combined refolding and functional studies based on T-cell epitopes derived from SPPV. An OLA Ⅰ/peptide complex was refolded correctly, which is necessary for the structural characterization. This study may contribute to the development of sheep vaccine based on peptides.


Subject(s)
Capripoxvirus , Poxviridae Infections , Sheep Diseases , Animals , Epitopes, T-Lymphocyte/genetics , Peptides/genetics , Sheep
17.
J Virol ; 95(24): e0130821, 2021 11 23.
Article in English | MEDLINE | ID: mdl-34586859

ABSTRACT

Foot-and-mouth disease virus (FMDV) exhibits broad antigenic diversity with poor intraserotype cross-neutralizing activity. Studies of the determinant involved in this diversity are essential for the development of broadly protective vaccines. In this work, we isolated a bovine antibody, designated R55, that displays cross-reaction with both FMDV A/AF/72 (hereafter named FMDV-AAF) and FMDV A/WH/09 (hereafter named FMDV-AWH) but only has a neutralizing effect on FMDV-AWH. Near-atomic resolution structures of FMDV-AAF-R55 and FMDV-AWH-R55 show that R55 engages the capsids of both FMDV-AAF and FMDV-AWH near the icosahedral 3-fold axis and binds to the ßB and BC/HI-loops of VP2 and to the B-B knob of VP3. The common interaction residues are highly conserved, which is the major determinant for cross-reaction with both FMDV-AAF and FMDV-AWH. In addition, the cryo-EM structure of the FMDV-AWH-R55 complex also shows that R55 binds to VP3E70 located at the VP3 BC-loop in an adjacent pentamer, which enhances the acid and thermal stabilities of the viral capsid. This may prevent capsid dissociation and genome release into host cells, eventually leading to neutralization of the viral infection. In contrast, R55 binds only to the FMDV-AAF capsid within one pentamer due to the VP3E70G variation, which neither enhances capsid stability nor neutralizes FMDV-AAF infection. The VP3E70G mutation is the major determinant involved in the neutralizing differences between FMDV-AWH and FMDV-AAF. The crucial amino acid VP3E70 is a key component of the neutralizing epitopes, which may aid in the development of broadly protective vaccines. IMPORTANCE Foot-and-mouth disease virus (FMDV) causes a highly contagious and economically devastating disease in cloven-hoofed animals, and neutralizing antibodies play critical roles in the defense against viral infections. Here, we isolated a bovine antibody (R55) using the single B cell antibody isolation technique. Enzyme-linked immunosorbent assays (ELISA) and virus neutralization tests (VNT) showed that R55 displays cross-reactions with both FMDV-AWH and FMDV-AAF but only has a neutralizing effect on FMDV-AWH. Cryo-EM structures, fluorescence-based thermal stability assays and acid stability assays showed that R55 engages the capsid of FMDV-AWH near the icosahedral 3-fold axis and informs an interpentamer epitope, which overstabilizes virions to hinder capsid dissociation to release the genome, eventually leading to neutralization of viral infection. The crucial amino acid VP3E70 forms a key component of neutralizing epitopes, and the determination of the VP3E70G mutation involved in the neutralizing differences between FMDV-AWH and FMDV-AAF could aid in the development of broadly protective vaccines.


Subject(s)
Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Antibodies, Viral/metabolism , Foot-and-Mouth Disease Virus/chemistry , Foot-and-Mouth Disease Virus/immunology , Foot-and-Mouth Disease/immunology , Animals , Antibodies, Viral/isolation & purification , Antigenic Variation , Binding Sites, Antibody , Capsid/immunology , Capsid Proteins/genetics , Capsid Proteins/immunology , Cattle , Epitopes , Neutralization Tests
18.
J Virol ; 95(21): e0088121, 2021 10 13.
Article in English | MEDLINE | ID: mdl-34406868

ABSTRACT

Foot-and-mouth disease virus (FMDV) is a highly contagious virus that infects cloven-hoofed animals. Neutralizing antibodies play critical roles in antiviral infection. Although five known antigen sites that induce neutralizing antibodies have been defined, studies on cross-protective antigen sites are still scarce. We mapped two cross-protective antigen sites using 13 bovine-derived broadly neutralizing monoclonal antibodies (bnAbs) capable of neutralizing 4 lineages within 3 topotypes of FMDV serotype O. One antigen site was formed by a novel cluster of VP3-focused epitopes recognized by bnAb C4 and C4-like antibodies. The cryo-electron microscopy (cryo-EM) structure of the FMDV-OTi (O/Tibet/99)-C4 complex showed close contact with VP3 and a novel interprotomer antigen epitope around the icosahedral 3-fold axis of the FMDV particle, which is far beyond the known antigen site 4. The key determinants of the neutralizing function of C4 and C4-like antibodies on the capsid were ßB (T65), the B-C loop (T68), the E-F loop (E131 and K134), and the H-I loop (G196), revealing a novel antigen site on VP3. The other antigen site comprised two group epitopes on VP2 recognized by 9 bnAbs (B57, B73, B77, B82, F28, F145, F150, E46, and E54), which belong to the known antigen site 2 of FMDV serotype O. Notably, bnAb C4 potently promoted FMDV RNA release in response to damage to viral particles, suggesting that the targeted epitope contains a trigger mechanism for particle disassembly. This study revealed two cross-protective antigen sites that can elicit cross-reactive neutralizing antibodies in cattle and provided new structural information for the design of a broad-spectrum molecular vaccine against FMDV serotype O. IMPORTANCE FMDV is the causative agent of foot-and-mouth disease (FMD), which is one of the most contagious and economically devastating diseases of domestic animals. The antigenic structure of FMDV serotype O is rather complicated, especially for those sites that can elicit a cross-protective neutralizing antibody response. Monoclonal neutralization antibodies provide both crucial defense components against FMDV infection and valuable tools for fine analysis of the antigenic structure. In this study, we found a cluster of novel VP3-focused epitopes using 13 bnAbs against FMDV serotype O from natural host cattle, which revealed two cross-protective antigen sites on VP2 and VP3. Antibody C4 targeting this novel epitope potently promoted viral particle disassembly and RNA release before infection, which may indicate a vulnerable region of FMDV. This study reveals new structural information about cross-protective antigen sites of FMDV serotype O, providing valuable and strong support for future research on broad-spectrum vaccines against FMD.


Subject(s)
Antibodies, Viral/immunology , Antigens, Viral/chemistry , Antigens, Viral/immunology , Broadly Neutralizing Antibodies/immunology , Cross Protection/immunology , Foot-and-Mouth Disease Virus/immunology , Animals , Antibodies, Monoclonal/immunology , Cattle , Cryoelectron Microscopy/methods , Epitopes/chemistry , Epitopes/immunology , Foot-and-Mouth Disease Virus/classification , Serogroup
19.
J Gen Virol ; 102(7)2021 07.
Article in English | MEDLINE | ID: mdl-34280085

ABSTRACT

Pigs are susceptible to foot-and-mouth disease virus (FMDV), and the humoral immune response plays an essential role in protection against FMDV infection. However, little information is available about FMDV-specific mAbs derived from single B cells of pigs. This study aimed to determine the antigenic features of FMDV that are recognized by antibodies from pigs. Therefore, a panel of pig-derived mAbs against FMDV were developed using fluorescence-based single B cell antibody technology. Western blotting revealed that three of the antibodies (1C6, P2-7E and P2-8G) recognized conserved antigen epitopes on capsid protein VP2, and exhibited broad reactivity against both FMDV serotypes A and O. An alanine-substitution scanning assay and sequence conservation analysis elucidated that these porcine mAbs recognized two conserved epitopes on VP2: a linear epitope (2KKTEETTLL10) in the N terminus and a conformational epitope involving residues K63, H65, L66, F67, D68 and L81 on two ß-sheets (B-sheet and C-sheet) that depended on the integrity of VP2. Random parings of heavy and light chains of the IgGs confirmed that the heavy chain is predominantly involved in binding to antigen. The light chain of porcine IgG contributes to the binding affinity toward an antigen and may function as a support platform for antibody stability. In summary, this study is the first to reveal the conserved antigenic profile of FMDV recognized by porcine B cells and provides a novel method for analysing the antibody response against FMDV in its natural hosts (i.e. pigs) at the clonal level.


Subject(s)
Antibodies, Monoclonal/immunology , Antibodies, Viral/immunology , Capsid Proteins/immunology , Foot-and-Mouth Disease Virus/immunology , Swine/immunology , Animals , Antibodies, Monoclonal/isolation & purification , Antibodies, Viral/isolation & purification , Antibody Affinity , Antigens, Viral/immunology , B-Lymphocytes/immunology , Capsid Proteins/chemistry , Epitope Mapping , Epitopes/immunology , Foot-and-Mouth Disease Virus/classification , Genes, Immunoglobulin Heavy Chain , Genes, Immunoglobulin Light Chain , Immunoglobulin G/immunology , Immunoglobulin Heavy Chains/immunology , Immunoglobulin Light Chains/immunology , Serogroup
20.
Arch Virol ; 166(8): 2131-2140, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34003358

ABSTRACT

Inactivated foot-and-mouth disease virus (FMDV) vaccines have been used widely to control foot-and-mouth disease (FMD). However, the virions (146S) of this virus are easily dissociated into pentamer subunits (12S), which limits the immune protective efficacy of inactivated vaccines when the temperature is higher than 30 °C. A cold-chain system can maintain the quality of the vaccines, but such systems are usually not reliable in limited-resource settings. Thus, it is imperative to improve the thermostability of vaccine strains to guarantee the quality of the vaccines. In this study, four recombinant FMDV strains containing single or multiple amino acid substitutions in the structural proteins were rescued using a previously constructed FMDV type O full-length infectious clone (pO/DY-VP1). We found that single or multiple amino acid substitutions in the structural proteins affected viral replication to different degrees. Furthermore, the heat and acid stability of the recombinant viruses was significantly increased when compared with the parental virus. Three thermally stable recombinant viruses (rHN/DY-VP1Y2098F, rHN/DY-VP1V2090A-S2093H, and rHN/DY-VP1V2090A-S2093H-Y2098F) were prepared as inactivated vaccines to immunize pigs. Blood samples were collected every week to prepare sera, and a virus neutralization test showed that the substitutions S2093H and Y2098F, separately or in combination, did not affect the immunogenicity of the virus, but the Y2098F mutation increased the thermostability significantly (p < 0.05). Therefore, the rHN/DY-VP1Y2098F mutant should be considered for use in future vaccines.


Subject(s)
Amino Acid Substitution , Foot-and-Mouth Disease Virus/immunology , Foot-and-Mouth Disease/prevention & control , Viral Structural Proteins/genetics , Viral Vaccines/administration & dosage , Animals , Cell Line , Cricetinae , Drug Storage , Foot-and-Mouth Disease Virus/genetics , Guinea Pigs , Immunization , Neutralization Tests , Poverty , Serogroup , Swine , Vaccines, Inactivated/administration & dosage , Vaccines, Inactivated/genetics , Vaccines, Inactivated/immunology , Viral Structural Proteins/immunology , Viral Vaccines/genetics , Viral Vaccines/immunology , Virus Replication/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL