Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 170
Filter
1.
J Org Chem ; 2024 Jul 31.
Article in English | MEDLINE | ID: mdl-39083332

ABSTRACT

An efficient one-pot, three-component approach was devised to synthesize spiro[pyridine-thiazolidine] ring skeletons using thiazole salts, aldehydes, and enaminones. This method allows the assembly of structurally diverse spiroazepines through [3 + 1 + 2] tandem/spirocyclization reactions. This spirocyclization reaction offers several advantages, including transition metal-free conditions, high chemoselectivity, and the ability to construct structurally novel polycyclic compounds.

2.
Chem Asian J ; : e202400716, 2024 Jul 23.
Article in English | MEDLINE | ID: mdl-39041455

ABSTRACT

Excessive sulfur dioxide (SO2) disturbs physiology of lysosomes causing diseases and threatening human health. A fluorescent probe has been regarded as one of the most attractive approaches, which is compatible with living cells and possesses high sensitivity. However, most of fluorescent probes' reaction sites are activated before they reach the destination. In this work, an acid-activatable fluorescent probe PT1 was synthesized, characterized, and used for SO2 detection. The introduction of oxazolines in PT1 enables the intelligent response of probe to release the activation stie for SO2 derivatives through Michael addition upon exposure to acid. In vitro studies showed a remarkable selectivity of PT1 to SO2 derivatives than other biothiols with a limit of detection as low as 62 nM. Precise spatiotemporal identification of lysosomal SO2 fluctuations has been successfully performed by PT1. Furthermore, PT1 can be applied for monitoring SO2 derivatives in traditional Chinese medicines.

3.
Sci Total Environ ; 945: 174119, 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-38906304

ABSTRACT

With the death and decomposition of widely distributed photosynthetic organisms, free natural pigments are often detected in surface water, sediment and soil. Whether free pigments can act as photosensitizers to drive biophotoelectrochemical metabolism in nonphotosynthetic microorganisms has not been reported. In this work, we provide direct evidence for the photoelectrophic relationship between extracellular chlorophyll a (Chl a) and nonphotosynthetic microorganisms. The results show that 10 µg of Chl a can produce significant photoelectrons (∼0.34 A/cm2) upon irradiation to drive nitrate reduction in Shewanella oneidensis. Chl a undergoes structural changes during the photoelectric process, thus the ability of Chl a to generate a photocurrent decreases gradually with increasing illumination time. These changes are greater in the presence of microorganisms than in the absence of microorganisms. Photoelectron transport from Chl a to S. oneidensis occurs through a direct pathway involving the cytochromes MtrA, MtrB, MtrC and CymA but not through an indirect pathway involving riboflavin. These findings reveal a novel photoelectrotrophic linkage between natural photosynthetic pigments and nonphototrophic microorganisms, which has important implications for the biogeochemical cycle of nitrogen in various natural environments where Chl a is distributed.


Subject(s)
Chlorophyll A , Nitrates , Shewanella , Nitrates/metabolism , Shewanella/metabolism , Chlorophyll A/metabolism , Photosynthesis , Oxidation-Reduction , Photosensitizing Agents , Chlorophyll/metabolism
4.
Environ Sci Technol ; 58(27): 11923-11934, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38918172

ABSTRACT

Chlorinated anthracenes (Cl-Ants), persistent organic pollutants, are widely detected in the environment, posing potential lung toxicity risks due to frequent respiratory exposure. However, direct evidence and a comprehensive understanding of their toxicity mechanisms are lacking. Building on our prior findings of Cl-Ants' immunotoxic risks, this study developed a three-dimensional coculture spheroid model mimicking the lung's immune microenvironment. The objective is to explore the pulmonary immunotoxicity and comprehend its mechanisms, taking into account the heightened immune reactivity and frequent lung exposure of Cl-Ants. The results demonstrated that Cl-Ants exposure led to reduced spheroid size, increased macrophage migration outward, lowered cell viability, elevated 8-OHdG levels, disturbed anti-infection balance, and altered cytokine production. Specifically, the chlorine substituent number correlates with the extent of disruption of spheroid indicators caused by Cl-Ants, with stronger immunotoxic effects observed in dichlorinated Ant compared to those in monochlorinated Ant. Furthermore, we identified critical regulatory genes associated with cell viability (ALDOC and ALDOA), bacterial response (TLR5 and MAP2K6), and GM-CSF production (CEBPB). Overall, this study offers initial in vitro evidence of low-dose Cl-PAHs' pulmonary immunotoxicity, advancing the understanding of Cl-Ants' structure-related toxicity and improving external toxicity assessment methods for environmental pollutants, which holds significance for future monitoring and evaluation.


Subject(s)
Lung , Lung/drug effects , Anthracenes/toxicity , Humans , Coculture Techniques , Cell Survival/drug effects
5.
J Colloid Interface Sci ; 673: 958-970, 2024 Nov.
Article in English | MEDLINE | ID: mdl-38917670

ABSTRACT

In this study, leveraging the tunable surface groups of MXene, the two-dimensional (2D) Nb2CTx with OH terminal (NC) was synthesized. 2D ZnIn2S4 (ZIS) nanosheets were prepared with the aid of sodium citrate, enhancing the exposure ratio of active (110) facet. On this basis, 2D/2D ZnIn2S4/Nb2CTx heterojunctions were fabricated to improve photocatalytic hydrogen evolution reaction (HER) performance. The optimized 6 wt%Nb2CTx/ZnIn2S4-450 (6NC/ZIS-450) photocatalyt exhibits a remarkable HER rate of 3603 µmol g-1h-1, which is 10 times superior to that of the original ZnIn2S4. Its apparent quantum efficiency (AQE) at 380 nm reaches 14.9 %. Meanwhile, even after 5 rounds of HER, the activity of 2D/2D ZnIn2S4/Nb2CTx heterojunction remained at 90 %, far superior to that of pure ZnIn2S4 (34 % and 31 %). Energy band structure analysis and density functional theory (DFT) calculation indicate that Nb2CTx adsorbed with OH exhibit a low work function. By serving as a hole cocatalyst, it effectively boosts the photocatalytic HER rate of ZnIn2S4/Nb2CTx heterojunction and inhibits the photocorrosion of ZnIn2S4. This unique insight, via hole transport highways and increased exposure of active facets, effectively enhances the activity and stability of sulfides photocatalysts.

6.
J Hazard Mater ; 472: 134485, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38701725

ABSTRACT

2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) is a highly toxic persistent organic pollutant (POP) that can induce DNA damage within cells. Although oxidative stress is one of the primary mechanisms causing DNA damage, its role in the process of TCDD-induced DNA damage remains unclear. In this study, the TCDD-induced production of reactive oxygen species (ROS) and the occurrence of DNA damage at the AP site were monitored simultaneously. Further investigation revealed that TCDD impaired the activities of superoxide dismutase (SOD) and catalase (CAT), compromising the cellular antioxidant defense system. Consequently, this led to an increase in the production of O2.- and NO, thus inducing DNA damage at the AP site under oxidative stress. Our findings were further substantiated by the upregulation of key genes in the base excision repair (BER) pathway and the absence of DNA AP site damage after inhibiting O2.- and NO. In addition, transcriptome sequencing revealed that TCDD induces DNA damage by upregulating genes associated with oxidative stress in the mitogen-activated protein kinase (MAPK), cyclic adenosine monophosphate (cAMP), and breast cancer pathways. This study provides important insights into the toxicity mechanisms of TCDD.


Subject(s)
DNA Damage , Oxidative Stress , Polychlorinated Dibenzodioxins , Reactive Oxygen Species , Polychlorinated Dibenzodioxins/toxicity , Oxidative Stress/drug effects , DNA Damage/drug effects , Reactive Oxygen Species/metabolism , Catalase/metabolism , Superoxide Dismutase/metabolism , DNA Repair/drug effects , Humans , Environmental Pollutants/toxicity
7.
Talanta ; 276: 126233, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38739954

ABSTRACT

This study was designed to develop a rapid and sensitive method for quantifying legacy and emerging per- and polyfluoroalkyl substances (PFASs) in environmental samples with solid-phase microextraction (SPME) coupled with mass spectrometry (MS). An innovative SPME probe was fabricated via in situ polymerization, and the probe coating was optimized with response surface methodology to maximize the fluorine-fluorine interactions and electrostatic properties and ensure high selectivity for the target PFASs with enrichment factors of 48-491. The coupled SPME and MS provided a rapid and sensitive method for analyses of PFASs, with excellent linearity (r ≥ 0.9962) over the concentration range 0.001-1 µg/L and remarkably low detection limits of 0.1-13.0 ng/L. This method was used to analyze trace PFASs in tap water, river water, and wastewater samples and proved to be a simple and efficient analytical method for selective enrichment and detection of contaminants in the environment.

8.
Talanta ; 273: 125859, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38447341

ABSTRACT

In this study, the plasmonic Ag nanoparticles (Ag NPs) were uniformly anchored on the high conductivity Nb2CTx (MXene) nanosheets to construct an Ag/Nb2CTx substrate for surface-enhanced Raman spectroscopy (SERS) detection of polystyrene (PS) nanoplastics. The KI addition (0.15 mol/L), the volume ratio between substrate colloid and nanoplastic suspension (2:1), and the mass ratio of Nb2CTx in substrate (14%) on SERS performance were optimized. The EM hot spots of Ag/Nb2CTx are significantly enlarged and enhanced, elucidated by FDFD simulation. Then, the linear relationship between the PS nanoplastics concentration with three different sizes (50, 300, and 500 nm) and the SERS intensity was obtained (R2 > 0.976), wherein, the detection limit was as low as 10-4 mg/mL for PS nanoplastic. Owing to the fingerprint feature, the Ag/Nb2CTx-14% substrate successfully discerns the mixtures from two-component nanoplastics. Meanwhile, it exhibits excellent stability of PS nanoplastics on different detection sites. The recovery rates of PS nanoplastics with different sizes in lake water ranged from 94.74% to 107.29%, with the relative standard deviation (RSD) ranging from 2.88% to 8.30%. Based on this method, the expanded polystyrene (EPS) decomposition behavior was evaluated, and the PS concentrations in four water environments were analyzed. This work will pave the way for the accurate quantitative detection of low concentration of nanoplastics in aquatic environments.

9.
Org Lett ; 26(10): 2002-2006, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38394378

ABSTRACT

A copper-catalyzed [4+2] cyclization reaction of isoquinolines and alkynes is developed for the one-step construction of isoquinolinone derivatives with multisubstituted bridging rings. The unique feature of this three-component tandem cyclization reaction is the functionalization of the C1, N2, C3, and C4 positions of 3-haloisoquinolines via the construction of new C-N, C═O, and C-C bonds. This dearomatization strategy for the synthesis of structurally complex isoquinolinone-bridged cyclic compounds offers good chemoselectivity, broad functional group compatibility, greenness, and high step economy.

10.
Sci Total Environ ; 919: 170892, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38346650

ABSTRACT

Alternative splicing (AS), found in approximately 95 % of human genes, significantly amplifies protein diversity and is implicated in disease pathogenesis when dysregulated. However, the precise involvement of AS in the toxic mechanisms induced by TCDD (2,3,7,8-tetrachlorodibenzo-p-dioxin) remains incompletely elucidated. This study conducted a thorough global AS analysis in six human cell lines following TCDD exposure. Our findings revealed that environmentally relevant concentration (0.1 nM) of TCDD significantly suppressed AS events in all cell types, notably inhibiting diverse splicing events and reducing transcript diversity, potentially attributed to modifications in the splicing patterns of the inhibitory factor family, particularly hnRNP. And we identified 151 genes with substantial AS alterations shared among these cell types, particularly enriched in immune and metabolic pathways. Moreover, TCDD induced cell-specific changes in splicing patterns and transcript levels, with increased sensitivity notably in THP-1 monocyte, potentially linked to aberrant expression of pivotal genes within the spliceosome pathway (DDX5, EFTUD2, PUF60, RBM25, SRSF1, and CRNKL1). This study extends our understanding of disrupted alternative splicing and its relation to the multisystem toxicity of TCDD. It sheds light on how environmental toxins affect post-transcriptional regulatory processes, offering a fresh perspective for toxicology and disease etiology investigations.


Subject(s)
Polychlorinated Dibenzodioxins , Humans , Polychlorinated Dibenzodioxins/toxicity , Alternative Splicing , Serine-Arginine Splicing Factors , Peptide Elongation Factors , Ribonucleoprotein, U5 Small Nuclear
11.
Sci Total Environ ; 914: 169919, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38199361

ABSTRACT

Di-2-ethylhexyl phthalate (DEHP), a widely utilized plasticizer, has been described as a potential obesogen based on in vivo disruption of hepatic lipid homeostasis and in vitro promotion of lipid accumulation. However, limited literature exists regarding the specific ramifications of DEHP exposure on obese individuals, and the precise mechanisms underlying the adverse effects of DEHP exposure remain unclear. This study aimed to assess the impact of DEHP on hepatic lipid metabolism in obese mice by comparing them to normal mice. Following a 10-week DEHP exposure period, the obese mice exhibited higher blood lipid levels, more severe hepatic steatosis, and more infiltrations of inflammatory cells in liver tissue than normal mice. Interestingly, the body weight of the mice exhibited no significant alteration. In addition, transcriptomic analyses revealed that both lipogenesis and fatty acid oxidation contributed to hepatic lipid metabolism dysregulation following DEHP exposure. More specifically, alterations in the transcription of genes associated with hepatic lipid metabolism were linked to the different responses to DEHP exposure observed in normal and obese mice. Additionally, the outcomes of in vitro experiments validated the in vivo findings and demonstrated that DEHP exposure could modify hepatic lipid metabolism in normal mice by activating the LXR/SREBP-1c signaling pathway to promote lipogenesis. At the same time, DEHP exposure led to inhibition of the Camkkß/AMPK pathway to suppress ß-fatty acid oxidation. Conversely, in obese mice, DEHP exposure was found to be associated with the stimulation of both lipogenesis and fatty acid oxidation via activation of the LXR/SREBP-1c and PPAR-α signaling pathways, respectively. The findings presented in this study first elucidate the contrasting mechanisms underlying DEHP-induced liver damage in obese and normal mice, thereby offering valuable insights into the pathogenesis of DEHP-induced liver damage in individuals with obesity.


Subject(s)
Diethylhexyl Phthalate , Lipid Metabolism , Phthalic Acids , Animals , Mice , Diethylhexyl Phthalate/metabolism , Fatty Acids/metabolism , Lipids , Liver/metabolism , Mice, Obese , Obesity/chemically induced , Obesity/metabolism , Peroxisome Proliferator-Activated Receptors/metabolism , Signal Transduction , Sterol Regulatory Element Binding Protein 1/metabolism
12.
Anal Chem ; 96(4): 1391-1396, 2024 01 30.
Article in English | MEDLINE | ID: mdl-38227719

ABSTRACT

Per- and polyfluoroalkyl substances (PFASs) are a series of organic pollutants with potential cytotoxicity and biotoxicity. Accurate and sensitive detection of trace PFASs in single cells can provide insights into investigating their cytotoxicity, carcinogenicity, and mutagenicity. Here we report the development of an inner-wall coated nanopipette microextraction coupled with induced nanoelectrospray ionization mass spectrometry (InESI-MS) method and its application for rapid, sensitive, and accurate analysis of trace PFASs in single cells. A specially designed inner-wall coated nanopipette was prepared for sampling of the cytoplasm from a single cell, and the trace PFASs in the cytoplasm were selectively enriched into the coating via reversed-phase adsorption, ion bonding adsorption, and π-π interaction mechanisms. After the extraction, the cytoplasm was removed, and the enriched PFASs were then desorbed into some organic solvent, applying an alternating current (AC) voltage to the inner-wall coated nanopipette for InESI-MS analysis. The inner-wall coated nanopipette showed an exhaustive extraction to the trace PFASs in one single cell, and thus, the mass of each target analyte in the cytoplasm can be calculated via an internal standard calibration curve method, avoiding the measurement of ultrasmall volume cytoplasm for one single cell. By using the inner-wall coated nanopipette microextraction coupled with InESI-MS method, trace PFASs accumulated in the LO2 cells with pollutant exposure were successfully detected, and the accumulative behaviors and heterogeneities of PFASs in single cells were explored.


Subject(s)
Fluorocarbons , Water Pollutants, Chemical , Mass Spectrometry , Solvents , Adsorption , Fluorocarbons/analysis , Water Pollutants, Chemical/analysis
13.
J Colloid Interface Sci ; 658: 373-382, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38113546

ABSTRACT

In this work, potassium acetate (KAc) was added during the synthesis of a Zn-Fe based metal-organic framework (Fe-ZIF-8) to increase the fixed amount of Fe while simultaneously enhancing the number of pores. Electrospinning was utilized to embed KAc-modified Fe-ZIF-8 (Fe-ZIF-8-Ac) into the polyacrylonitrile nanofiber mesh, to obtain a network composite (Fe@NC-Ac) with hierarchical porous structure. Fe@NC-Ac was co-pyrolyzed with thiourea, resulting in Fe, N, S co-doped carbon electrocatalyst. The electrochemical tests indicated that the prepared catalyst displayed relatively remarkable oxygen reduction reaction (ORR) catalytic activity, with an onset potential (Eonset) of 1.08 V (vs. reversible hydrogen electrode, RHE) and a half-wave potential (E1/2) of 0.94 V, both higher than those of the commercial Pt/C (Eonset = 0.95 V and E1/2 = 0.84 V), respectively. Assembled into Zn-air batteries, the optimized catalyst exhibited higher open circuit voltage (1.698 V) and peak power density (90 mW cm-2) than those of the commercial 20 wt% Pt/C (1.402 V and 80 mW cm-2), respectively. This work provided a straightforward manufacturing strategy for the design of hierarchical porous carbon-based ORR catalysts with desirable performance.

14.
Anal Chem ; 95(46): 16791-16795, 2023 Nov 21.
Article in English | MEDLINE | ID: mdl-37937882

ABSTRACT

Polycyclic aromatic hydrocarbons (PAHs) and halogenated derivatives are a series of environmental pollutants with potential toxicity and health risks on biosystems and the ecosystem. Rapid and sensitive analysis of trace PAHs and halogenated PAHs in complex environmental samples is a challenging topic for analytical science. Here we report the development of a nanospray laser-induced plasma ionization MS method for rapid and sensitive analysis of trace PAHs and halogenated PAHs under ambient and open-air conditions. A nanospray tip was applied for loading samples and placed pointing to the MS inlet, being a nanospray emitter with the application of a high voltage. A beam of laser was focused to induce energetic plasma between the nanospray emitter and the MS inlet for ionization of PAHs and halogenated PAHs for mass spectrometric analysis. Meanwhile, an inner-wall naphthyl-coated nanospray emitter was developed and applied as a solid-phase microextraction (SPME) probe for highly selective enrichment of trace PAHs and halogenated PAHs in complex environmental samples, and some organic solvent was applied to desorb the analytes for nanospray laser-induced plasma ionization MS analysis. Satisfactory linearity for each target PAH and halogenated PAH was obtained, with correlation coefficient values (r) no less than 0.9917. The method showed extremely high sensitivity for analysis of trace PAHs and halogenated PAHs in water, with limits of detection (LODs) and quantification (LOQs) of 0.0001-0.02 and 0.0003-0.08 µg/L, respectively. By using the inner-wall naphthyl-coated nanospray laser-induced plasma ionization MS method, sensitive detection of trace PAHs and halogenated PAHs in real sewage and wastewater samples was successfully achieved.

15.
Huan Jing Ke Xue ; 44(11): 6149-6158, 2023 Nov 08.
Article in Chinese | MEDLINE | ID: mdl-37973098

ABSTRACT

Pharmaceutically active compounds(PhACs) have become a class of new pollutants in the environment after extensive production and use of PhACs in China. To investigate the pollution characteristics of PhACs in Guangdong Province, raw sewage was collected from 186 sewage treatment plants in 21 cities, including 178 townships and administrative districts in Guangdong Province. The pollution levels of ten typical PhACs in influent water of sewage treatment plants were analyzed using automatic solid phase extraction and high performance liquid chromatography-triple quadrupole mass spectrometry. The spatial distribution characteristics of PhACs in Guangdong Province were fully revealed, and the potential ecological risks of PhACs were evaluated. The results showed that PhACs were detected in all wastewater plants, and the mass concentration of PhACs ranged from 21.00 to 9558.25 ng·L-1. Metoprolo, acetaminophen, bezafibrate, and caffeine were the main pollutants. In terms of spatial distribution, the average mass concentration of ΣPhACs in various regions of Guangdong Province was in the following order:Pearl River Delta>North Guangdong>East Guangdong≈West Guangdong. When the mass concentration of ΣPhACs was over 2500 ng·L-1 in the influent water of sewage treatment plants, the concentration of PhACs in effluent was estimated according to the sewage disposal technology. The ecological risk of PhACs was carried out based on the effluent. The results revealed that the ecological risk of PhACs was low in Guangdong Province, and the risk of bezafibrate was moderate in the cities of Shaoguan, Jiangmen, and Shenzhen. The highest ecological risk of ΣPhACs was located in Shaoguan.


Subject(s)
Sewage , Water Pollutants, Chemical , Sewage/chemistry , Water Pollutants, Chemical/analysis , Bezafibrate/analysis , Environmental Monitoring/methods , Water/analysis , Risk Assessment , China , Pharmaceutical Preparations
16.
J Proteome Res ; 22(12): 3893-3900, 2023 12 01.
Article in English | MEDLINE | ID: mdl-37883661

ABSTRACT

Rheumatoid arthritis (RA) is a long-term autoimmune condition that causes joint and surrounding tissue inflammation. Lipid mediators are involved in inflammation and deterioration of the joints. Despite attempts to discover effective drug targets to intervene with lipid metabolism in the disease, progress has been limited. In this study, precise lipidomic technology was employed to quantify a broad range of serum ceramides and sphingomyelin (SM) in a large cohort, revealing an association between the accumulation of circulating ceramides and disturbed ceramide/SM cycles during the progression of RA. In our investigation, we discovered that eight ceramides exhibited a positive correlation with the activity of RA, thereby enhancing the accuracy of RA diagnosis, particularly in patients with serum antibody-negative RA. Furthermore, the enzyme SM phosphodiesterase 3 (SMPD3) was found to disrupt the circulating SM cycle and accelerate the progression of RA. The activity of SMPD3 can be inhibited by methotrexate, resulting in decreased metabolic conversion of SM to ceramide. These findings suggest that targeting the SM cycle may provide a new therapeutic option for RA.


Subject(s)
Arthritis, Rheumatoid , Sphingomyelins , Humans , Sphingomyelins/metabolism , Ceramides/metabolism , Lipidomics , Sphingomyelin Phosphodiesterase/metabolism , Inflammation
17.
Environ Pollut ; 338: 122684, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-37802284

ABSTRACT

Intestinal cell metabolism plays an important role in intestine health. Perfluorooctanoic acid (PFOA) exposure could disorder intestinal cell metabolism. However, the mechanisms regarding how the three carbon sources interact under PFOA stress remined to be understood. The present study aimed to dissect the interconnections of glucose, glutamine, and fatty acids in PFOA-treated human colorectal cancer (DLD-1) cells using 13C metabolic flux analysis. The abundance of glycolysis and tricarboxylic acid (TCA) cycle metabolites was decreased in PFOA-treated cells except for succinate, whereas most of amino acids were more abundant. Beside serine and glycine, the levels of metabolites derived from 13C glucose were reduced in PFOA-treated cells, and the pentose phosphate pathway flux was 1.4-fold higher in PFOA-treated cells than in the controls. In reductive glutamine pathway, higher labeled enrichment of citrate, malate, fumarate, and succinate was observed for PFOA-treated cells. The contribution of glucose to fatty acid synthesis in PFOA-treated cells decreased while the contribution of glutamine to fatty acid synthesis increased. Additionally, synthesis of TCA intermediates from fatty acid ß-oxidation was promoted in PFOA-treated cells. All results suggested that metabolic remodeling could happen in intestinal cells exposed to PFOA, which was potentially related to PFOA toxicity relevant with the loss of glucose in biomass synthesis and energy metabolism.


Subject(s)
Fatty Acids , Glutamine , Humans , Glutamine/metabolism , Glucose/metabolism , Intestines , Succinates
18.
Anal Chem ; 95(37): 13750-13755, 2023 09 19.
Article in English | MEDLINE | ID: mdl-37669419

ABSTRACT

Perfluorooctanesulfonic acid (PFOS) is a commonly found environmental pollutant with potential toxicity and health risks to biosystems and ecosystems. Study of the accumulation behavior and heterogeneity of PFOS in biological primary organ cells provides us significant insights to explore its cytotoxicity, carcinogenicity, and mutagenicity. Here a single-cell mass cytometry system was established for the high-throughput analysis of trace PFOS and the exploration of its accumulation behavior and heterogeneity in zebrafish primary organ cells. The single-cell mass cytometry system applied a ∼25 µm constant-inner-diameter capillary as the single-cell generation and transportation channel with an etched tip-end of 40 µm as the nanoelectrospray emitter for mass spectrometric analysis. The single-cell mass cytometry system showed satisfactory semiquantitative performance and sensitivity for analysis of PFOS in single cells, with a high detection throughput of ∼35 cells/min. Subsequently, the liver, intestine, heart, and brain from PFOS-exposed zebrafish (100 pg/µL, 28 days) were dissociated and prepared as cell suspensions, and the cell suspensions were introduced into the single-cell mass cytometry system for high-throughput analysis of PFOS in individual primary organ cells. Significant cellular accumulation heterogeneities were observed, with the highest content in liver cells, followed by intestine cells, then heart cells, and the lowest in brain cells. In addition, the dynamics of PFOS in the zebrafish liver, intestine, heart, and brain cells showed typical violin plot distributions and were well-described using a gamma (γ) function.


Subject(s)
Ecosystem , Zebrafish , Animals , Suspensions , Brain
19.
Mater Horiz ; 10(12): 5474-5483, 2023 11 27.
Article in English | MEDLINE | ID: mdl-37703055

ABSTRACT

Chronic diabetic wounds persistently face the threat of evolving into diabetic foot ulcers owing to severe hypoxia, high levels of reactive oxygen species (ROS), and a complex inflammatory microenvironment. To concurrently surmount these obstacles, we developed an all-round therapeutic strategy based on nanozymes that simultaneously scavenge ROS, generate O2 and regulate the immune system. First, we designed a dynamic covalent bond hybrid of a metal-organic coordination polymer as a synthesis template, obtaining high-density platinum nanoparticle assemblies (PNAs). This compact assembly of platinum nanoparticles not only effectively simulates antioxidant enzymes (CAT, POD) but also, under ultrasound (US), enhances electron polarization through the surface plasmon resonance effect, endowing it with the ability to induce GSH generation by effectively replicating the enzyme function of glutathione reductase (GR). PNAs, by mimicking the activity of CAT and POD, effectively catalyze hydrogen peroxide, alleviate hypoxia, and effectively generate GSH under ultrasound, further enhancing ROS scavenging. Notably, PNAs can regulate macrophage responses in the inflammatory microenvironment, circumventing the use of any additives. It was confirmed that PNAs can enhance cell proliferation and migration, promote neoangiogenesis IN VITRO, and accelerate the healing of infected diabetic wounds IN VIVO. We believe that an all-round therapeutic method based on PNA nanozymes could be a promising strategy for sustained diabetic wound healing.


Subject(s)
Diabetic Foot , Metal Nanoparticles , Peptide Nucleic Acids , Humans , Hydrogels , Metal Nanoparticles/therapeutic use , Platinum , Reactive Oxygen Species , Hypoxia
20.
Chemosphere ; 341: 140138, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37696478

ABSTRACT

Lead (Pb) exposure is well recognized as a significant environmental factor associated with the high incidence of cardiovascular diseases. However, the carriers and molecular targets of Pb in human blood remain to be understood, especially for a real Pb exposure scenario. In this study, a total of 350 blood samples were collected from the smelting workers and systematically analyzed using metallomics and metalloproteomics approaches. The results showed that the majority of Pb (∼99.4%) could be presented in the blood cells. Pb in the cytoplasm of blood cells accounted for approximately 83.1% of the total blood Pb, with nearly half of Pb being bound to proteins. Pb-binding proteins in the blood of workers were identified as hemoglobin, catalase, haptoglobin, δ-aminolevulinic acid dehydratase, and peroxiredoxin-2. Multiple linear regression analysis demonstrated that higher levels of Pb bound to proteins (Mix-bound Pb and Protein-bound Pb) were positively associated with higher systolic blood pressure (p < 0.05). However, the association between blood lead level, Pb levels in the blood cells and systolic blood pressure was not observed (p > 0.05). This study suggested that Pb bound to proteins could be a suitable biomarker for indicating the potential risk of occupational hypertension.


Subject(s)
Cardiovascular Diseases , Hypertension , Humans , Carrier Proteins , Blood Pressure , Lead/toxicity
SELECTION OF CITATIONS
SEARCH DETAIL