Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters








Database
Publication year range
1.
Acta Neuropathol Commun ; 12(1): 147, 2024 Sep 10.
Article in English | MEDLINE | ID: mdl-39256776

ABSTRACT

Maladaptive changes of metabolic patterns in the lumbar dorsal root ganglion (DRG) are critical for nociceptive hypersensitivity genesis. The accumulation of branched-chain amino acids (BCAAs) in DRG has been implicated in mechanical allodynia and thermal hyperalgesia, but the exact mechanism is not fully understood. This study aimed to explore how BCAA catabolism in DRG modulates pain sensitization. Wildtype male mice were fed a high-fat diet (HFD) for 8 weeks. Adult PP2Cmfl/fl mice of both sexes were intrathecally injected with pAAV9-hSyn-Cre to delete the mitochondrial targeted 2 C-type serine/threonine protein phosphatase (PP2Cm) in DRG neurons. Here, we reported that BCAA catabolism was impaired in the lumbar 4-5 (L4-L5) DRGs of mice fed a high-fat diet (HFD). Conditional deletion of PP2Cm in DRG neurons led to mechanical allodynia, heat and cold hyperalgesia. Mechanistically, the genetic knockout of PP2Cm resulted in the upregulation of C-C chemokine ligand 5/C-C chemokine receptor 5 (CCL5/CCR5) axis and an increase in transient receptor potential ankyrin 1 (TRPA1) expression. Blocking the CCL5/CCR5 signaling or TRPA1 alleviated pain behaviors induced by PP2Cm deletion. Thus, targeting BCAA catabolism in DRG neurons may be a potential management strategy for pain sensitization.


Subject(s)
Amino Acids, Branched-Chain , Diet, High-Fat , Ganglia, Spinal , Hyperalgesia , Animals , Ganglia, Spinal/metabolism , Male , Hyperalgesia/metabolism , Amino Acids, Branched-Chain/metabolism , Mice , Diet, High-Fat/adverse effects , Female , Mice, Inbred C57BL , Neurons/metabolism , TRPA1 Cation Channel/metabolism , TRPA1 Cation Channel/genetics , Mice, Knockout , Receptors, CCR5/metabolism , Receptors, CCR5/genetics
2.
Sichuan Da Xue Xue Bao Yi Xue Ban ; 54(5): 941-946, 2023 Sep.
Article in Chinese | MEDLINE | ID: mdl-37866950

ABSTRACT

Objective: To investigate the effect of silencing protein phosphatase 2cm ( Pp2cm) gene on the expression of inflammatory factors in macrophages infected with Staphylococcus aureus ( S. aureus) and the mechanisms involved. Methods: The effects of Pp2cm knockdown on inflammatory factors, proliferation, apoptosis, and Toll-like receptor (TLR) signaling were analyzed in RAW 264.7 cells, a murine macrophage cell line, transfected with adenovirus (Ad). The cells were divided into four groups, including Ad-Ctrl group, Ad- Pp2cm group, Ad-Ctrl+ S. aureus group and Ad- Pp2cm+ S. aureus group. Cell transfection was achieved by separately introducing control adenovirus (Ad-Ctrl) or adenovirus targeting the Pp2cm gene (Ad- Pp2cm) and inflammation or the absence of inflammation was induced by applying or not applying S. aureus. The expression of tumor necrosis factor-alpha ( TNF-α), interleukin-1ß ( IL-1 ß), TLR2, TLR4, Toll-like receptor adaptor protein ( Tirap) and myeloid differentiation factor 88 ( Myd88) was determined by real-time fluorescent quantitative polymerase chain reaction (RT-qPCR). PP2Cm protein expression was determined by Western blot. Cell proliferation was determined by cell counting kit-8 (CCK-8) assay and cell apoptosis was measured by flow cytometry. Results: The expression of Pp2cmgene and PP2Cm protein was downregulated in the Ad- Pp2cm group when compared to the Ad-Ctrl group, with the diference showing statistical significance ( P<0.05). When compared to those of the Ad-Ctrl+ S. aureus group, macrophages in the Ad- Pp2cm+ S. aureus group showed significantly increase in the TNF- α and IL-1 ß gene levels ( P<0.01). Furthermore, the Ad- Pp2cm group demonstrated elevated gene expression levels of TLR2, TLR4, Tirap and Myd88 in macrophages when compared to the Ad-Ctrl group, with the difference showing statistical significance ( P<0.05). There were no statistically significant differences in cell apoptosis and proliferation between the Ad-Ctrl and Ad- Pp2cm groups. Conclusions: Silencing Pp2cm gene promotes the inflammatory response of macrophages to S. aureus infection. Moreover, the TLR pathway plays an important role in the inflammatory activation of macrophages.


Subject(s)
Staphylococcal Infections , Staphylococcus aureus , Mice , Animals , Staphylococcus aureus/metabolism , Toll-Like Receptor 2/genetics , Toll-Like Receptor 2/metabolism , Interleukin-1beta/metabolism , Toll-Like Receptor 4/genetics , Myeloid Differentiation Factor 88/genetics , Myeloid Differentiation Factor 88/metabolism , Toll-Like Receptors/genetics , Toll-Like Receptors/metabolism , Macrophages/metabolism , Tumor Necrosis Factor-alpha/metabolism , Inflammation/genetics , Gene Silencing
3.
Front Nutr ; 9: 902635, 2022.
Article in English | MEDLINE | ID: mdl-35634382

ABSTRACT

Obesity is a significant health concern as a result of poor-quality diet, for example, high-fat diet (HFD). Although multiple biological and molecular changes have been identified to contribute to HFD-induced pain susceptibility, the mechanisms are not fully understood. Here, we show that mice under 8 weeks of HFD were sensitive to mechanical and thermal stimuli, which was coupled with an accumulation of branched-chain amino acids (BCAAs) in lumbar dorsal root ganglia (DRG) due to local BCAA catabolism deficiency. This HFD-induced hyperalgesic phenotype could be exacerbated by supply of excessive BCAAs or mitigated by promotion of BCAA catabolism via BT2 treatment. In addition, our results suggested that HFD-related pain hypersensitivity was associated with a pro-inflammatory status in DRG, which could be regulated by BCAA abundance. Therefore, our study demonstrates that defective BCAA catabolism in DRG facilitates HFD-induced pain hypersensitivity by triggering inflammation. These findings not only reveal metabolic underpinnings for the pathogenesis of HFD-related hyperalgesia but also offer potential targets for developing diet-based therapy of chronic pain.

4.
Oxid Med Cell Longev ; 2022: 2513837, 2022.
Article in English | MEDLINE | ID: mdl-35340211

ABSTRACT

Septic cardiomyopathy is a life-threatening complication of severe sepsis and septic shock. Oxidative stress and mitochondrial dysfunction have been identified as significant abnormalities in septic cardiomyopathy. However, specific treatments are rare. This study aims to investigate the impact of ß-hydroxybutyrate (ß-OHB) on septic cardiomyopathy and explore the underlying mechanism(s). We found that pretreatment of D-ß-hydroxybutyrate-(R)-1,3 butanediol monoester (ketone ester, 3 mg/g body weight, once daily) by gavage for three days elevated the levels of ketone bodies, especially that of ß-hydroxybutyrate (ß-OHB) in the circulation and mouse hearts, which exerted a protective effect against lipopolysaccharide (LPS, 20 mg/kg)-induced septic cardiomyopathy in mice. In addition, an LPS-stimulated macrophage-conditioned medium (MCM) was used to mimic the pathological process of septic cardiomyopathy. Mechanistically, ß-OHB alleviated myocardial oxidative stress and improved mitochondrial respiratory function through the antioxidant FoxO3a/MT2 pathway activated via histone deacetylase (HDAC) inhibition, which ultimately enhanced heart performance in septic cardiomyopathy. Our results, therefore, suggested an unappreciated critical role of ß-OHB in septic heart protection as well as highlighted the potential of ß-OHB as a simple remedy for the septic cardiomyopathy population.


Subject(s)
Cardiomyopathies , 3-Hydroxybutyric Acid/metabolism , 3-Hydroxybutyric Acid/pharmacology , Animals , Cardiomyopathies/etiology , Ketone Bodies/adverse effects , Ketone Bodies/metabolism , Mice , Myocardium/metabolism , Oxidative Stress
SELECTION OF CITATIONS
SEARCH DETAIL