Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 112
Filter
1.
ACS Nano ; 18(41): 27853-27868, 2024 Oct 15.
Article in English | MEDLINE | ID: mdl-39370780

ABSTRACT

Ultrahigh field magnetic resonance imaging (UHF-MRI) (≥7 T) can dramatically boost image resolution and signal-to-noise ratio, which have distinct advantages in multifunctional imaging. However, their research and application are currently limited by the absence of high-field contrast agents (CAs) and the low sensitivity and accuracy of T1/T2 single-modality CAs. Therefore, the development of T1-T2 dual-mode CAs that respond to UHF-MRI and nanoformulations with therapeutic sensitization can bring ideas for the integrated application of precise and synchronous tumor theranostics. Herein, we present a biomimetic mineralization strategy for synthesizing holmium/manganese oxide-bovine serum albumin-photosensitizer chlorin e6 nanohybrids. The hybrid nanoparticles exhibited better tumor accumulation, a suitable time imaging window, and excellent pH-response T1-T2 dual-mode UHF-MRI performance. The antitumor effect comes from the amelioration of the hypoxic tumor microenvironment to promote the synergistic effect of photodynamic therapy and radiotherapy, along with negligible acute toxicity. Undoubtedly, this work not only provides a different perspective for developing multifunctional nanotherapeutics but also promotes the potential clinical exploitation and translation of UHF CAs.


Subject(s)
Biomineralization , Magnetic Resonance Imaging , Photosensitizing Agents , Theranostic Nanomedicine , Animals , Mice , Humans , Photosensitizing Agents/chemistry , Photosensitizing Agents/pharmacology , Photosensitizing Agents/chemical synthesis , Manganese Compounds/chemistry , Manganese Compounds/pharmacology , Chlorophyllides , Photochemotherapy , Porphyrins/chemistry , Porphyrins/pharmacology , Nanoparticles/chemistry , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Oxides/chemistry , Serum Albumin, Bovine/chemistry , Contrast Media/chemistry , Contrast Media/chemical synthesis , Neoplasms/diagnostic imaging , Neoplasms/drug therapy , Neoplasms/therapy , Mice, Inbred BALB C
2.
J Burn Care Res ; 2024 Aug 07.
Article in English | MEDLINE | ID: mdl-39110034

ABSTRACT

It has long been known that T cells participate in wound healing, however, it is still enigmatic about the landscape of the signaling derived from T cells in the process of wound healing. With the advantages of scRNA-seq, in combination of immunofluorescent imaging, we identified activated T cells, cytotoxic T cells (CTLs), exhausting T cells and Tregs existing in inflammation phase of wound healing. Further analysis revealed each T cell population possess distinguished signals contributed to wound healing, some are critical for improving the wound healing quality. Besides, this study discovered and validated the exhistance of exhausting T cells among the T cells accumulated in skin duing wound healing, and the molecular mechanism(s) and contribution of exhausting T cells to wound healing deserves extensive studies in the future.

3.
Front Immunol ; 15: 1412298, 2024.
Article in English | MEDLINE | ID: mdl-39091505

ABSTRACT

Background: Osteoporosis (OP) associated with aging exerts substantial clinical and fiscal strains on societal structures. An increasing number of research studies have suggested a bidirectional relationship between circulating inflammatory markers (CIMs) and OP. However, observational studies are susceptible to perturbations in confounding variables. In contrast, Mendelian randomization (MR) offers a robust methodological framework to circumvent such confounders, facilitating a more accurate assessment of causality. Our study aimed to evaluate the causal relationships between CIMs and OP, identifying new approaches and strategies for the prevention, diagnosis and treatment of OP. Methods: We analyzed publicly available GWAS summary statistics to investigate the causal relationships between CIMs and OP. Causal estimates were calculated via a systematic analytical framework, including bidirectional MR analysis and Bayesian colocalization analysis. Results: Genetically determined levels of CXCL11 (OR = 0.91, 95% CI = 0.85-0.98, P = 0.008, PFDR = 0.119), IL-18 (OR = 0.88, 95% CI = 0.83-0.94, P = 8.66×10-5, PFDR = 0.008), and LIF (OR = 0.86, 95% CI = 0.76-0.96, P = 0.008, PFDR = 0.119) were linked to a reduced risk of OP. Conversely, higher levels of ARTN (OR = 1.11, 95% CI = 1.02-1.20, P = 0.012, PFDR = 0.119) and IFNG (OR = 1.16, 95% CI = 1.03-1.30, P = 0.013, PFDR = 0.119) were associated with an increased risk of OP. Bayesian colocalization analysis revealed no evidence of shared causal variants. Conclusion: Despite finding no overall association between CIMs and OP, five CIMs demonstrated a potentially significant association with OP. These findings could pave the way for future mechanistic studies aimed at discovering new treatments for this disease. Additionally, we are the first to suggest a unidirectional causal relationship between ARTN and OP. This novel insight introduces new avenues for research into diagnostic and therapeutic strategies for OP.


Subject(s)
Biomarkers , Genome-Wide Association Study , Mendelian Randomization Analysis , Osteoporosis , Humans , Osteoporosis/blood , Osteoporosis/genetics , Osteoporosis/etiology , Osteoporosis/diagnosis , Biomarkers/blood , Bayes Theorem , Polymorphism, Single Nucleotide , Genetic Predisposition to Disease , Inflammation/blood , Inflammation/genetics , Female
4.
J Cancer ; 15(15): 4879-4892, 2024.
Article in English | MEDLINE | ID: mdl-39132147

ABSTRACT

Background: Tryptophan (Trp) metabolism is closely related to tumor immunity, and its disorder can cause an immunosuppressive microenvironment, promoting the occurrence and development of hepatocellular carcinoma (HCC). The aim of this study is to explore and validate the independent prognostic genes in patients suffered from HCC. Methods: The transcriptome data of GSE87630 from GEO database were downloaded to analyze differentially expressed genes (DECs) which were intersected with the gene sets of Trp metabolism from MsigDB database. Univariate/multivariate COX regression was performed to identify the genes with independent prognostic significance. TCGA, GTEx, UALCAN, and GEPIA2 databases were applied to analyze DEGs for prognosis. RNA seq data of HCC from TCGA database were collected for Lasso regression analysis. The ssGSEA algorithm was used to perform the analysis of TCGA data. The effects of the candidate differential gene on HCC cells proliferation and migration were evaluated using EdU immunofluorescence and transwell assays. Results: Trp metabolism-related DECs for HCCs were obtained, including MAOB, CYP1A2, KYNU, CYP2E1, ALDH2, CYP2C18, TDO2, AOX1, CYP3A4 and INMT. Moreover, multivariate COX regression results showed that ALDH2 can serve as an independent prognostic molecule and its transcriptional and translational levels were significantly reduced in the tumor tissues. The low expression of ALDH2 was associated with poor prognosis. Overexpression of ALDH2 dramatically reduced the HCC cells proliferation and migration. Conclusion: ALDH2 is associated with Trp metabolism and its downregulation in HCC has a potential value on prognosis. Overexpression of ALDH2 can reduce the proliferation and migration of HCC cells.

5.
J Transl Med ; 22(1): 712, 2024 Jul 31.
Article in English | MEDLINE | ID: mdl-39085929

ABSTRACT

BACKGROUND: Excessive pericyte coverage promotes tumor growth, and a downregulation may solve this dilemma. Due to the double-edged sword role of vascular pericytes in tumor microenvironment (TME), indiscriminately decreasing pericyte coverage by imatinib causes poor treatment outcomes. Here, we optimized the use of imatinib in a colorectal cancer (CRC) model in high pericyte-coverage status, and revealed the value of multiparametric magnetic resonance imaging (mpMRI) at 9.4T in monitoring treatment-related changes in pericyte coverage and the TME. METHODS: CRC xenograft models were evaluated by histological vascular characterizations and mpMRI. Mice with the highest pericyte coverage were treated with imatinib or saline; then, vascular characterizations, tumor apoptosis and HIF-1α level were analyzed histologically, and alterations in the expression of Bcl-2/bax pathway were assessed through qPCR. The effects of imatinib were monitored by dynamic contrast-enhanced (DCE)-, diffusion-weighted imaging (DWI)- and amide proton transfer chemical exchange saturation transfer (APT CEST)-MRI at 9.4T. RESULTS: The DCE- parameters provided a good histologic match the tumor vascular characterizations. In the high pericyte coverage status, imatinib exhibited significant tumor growth inhibition, necrosis increase and pericyte coverage downregulation, and these changes were accompanied by increased vessel permeability, decreased microvessel density (MVD), increased tumor apoptosis and altered gene expression of apoptosis-related Bcl-2/bax pathway. Strategically, a 4-day imatinib effectively decreased pericyte coverage and HIF-1α level, and continuous treatment led to a less marked decrease in pericyte coverage and re-elevated HIF-1α level. Correlation analysis confirmed the feasibility of using mpMRI parameters to monitor imatinib treatment, with DCE-derived Ve and Ktrans being most correlated with pericyte coverage, Ve with vessel permeability, AUC with microvessel density (MVD), DWI-derived ADC with tumor apoptosis, and APT CEST-derived MTRasym at 1 µT with HIF-1α. CONCLUSIONS: These results provided an optimized imatinib regimen to achieve decreasing pericyte coverage and HIF-1α level in the high pericyte-coverage CRC model, and offered an ultrahigh-field multiparametric MRI approach for monitoring pericyte coverage and dynamics response of the TME to treatment.


Subject(s)
Apoptosis , Colorectal Neoplasms , Hypoxia-Inducible Factor 1, alpha Subunit , Imatinib Mesylate , Multiparametric Magnetic Resonance Imaging , Pericytes , Imatinib Mesylate/pharmacology , Imatinib Mesylate/therapeutic use , Animals , Pericytes/metabolism , Pericytes/drug effects , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/pathology , Colorectal Neoplasms/diagnostic imaging , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Cell Line, Tumor , Apoptosis/drug effects , Humans , Mice, Nude , Tumor Microenvironment/drug effects , Mice , Mice, Inbred BALB C , Xenograft Model Antitumor Assays
6.
Eur Radiol ; 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38907098

ABSTRACT

OBJECTIVES: An easy-to-implement MRI model for predicting partial response (PR) postradiotherapy for diffuse intrinsic pontine glioma (DIPG) is lacking. Utilizing quantitative T2 signal intensity and introducing a visual evaluation method based on T2 signal intensity heterogeneity, and compared MRI radiomic models for predicting radiotherapy response in pediatric patients with DIPG. METHODS: We retrospectively included patients with brainstem gliomas aged ≤ 18 years admitted between July 2011 and March 2023. Applying Response Assessment in Pediatric Neuro-Oncology criteria, we categorized patients into PR and non-PR groups. For qualitative analysis, tumor heterogeneity vision was classified into four grades based on T2-weighted images. Quantitative analysis included the relative T2 signal intensity ratio (rT2SR), extra pons volume ratio, and tumor ring-enhancement volume. Radiomic features were extracted from T2-weighted and T1-enhanced images of volumes of interest. Univariate analysis was used to identify independent variables related to PR. Multivariate logistic regression was performed using significant variables (p < 0.05) from univariate analysis. RESULTS: Of 140 patients (training n = 109, and test n = 31), 64 (45.7%) achieved PR. The AUC of the predictive model with extrapontine volume ratio, rT2SRmax-min (rT2SRdif), and grade was 0.89. The AUCs of the T2-weighted and T1WI-enhanced models with radiomic signatures were 0.84 and 0.81, respectively. For the 31 DIPG test sets, the AUCs were 0.91, 0.83, and 0.81, for the models incorporating the quantitative features, radiomic model (T2-weighted images, and T1W1-enhanced images), respectively. CONCLUSION: Combining T2-weighted quantification with qualitative and extrapontine volume ratios reliably predicted pediatric DIPG radiotherapy response. CLINICAL RELEVANCE STATEMENT: Combining T2-weighted quantification with qualitative and extrapontine volume ratios can accurately predict diffuse intrinsic pontine glioma (DIPG) radiotherapy response, which may facilitate personalized treatment and prognostic assessment for patients with DIPG. KEY POINTS: Early identification is crucial for radiotherapy response and risk stratification in diffuse intrinsic pontine glioma. The model using tumor heterogeneity and quantitative T2 signal metrics achieved an AUC of 0.91. Using a combination of parameters can effectively predict radiotherapy response in this population.

8.
J Control Release ; 372: 403-416, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38914207

ABSTRACT

The immunosuppressive microenvironment of malignant tumors severely hampers the effectiveness of anti-tumor therapy. Moreover, abnormal tumor vasculature interacts with immune cells, forming a vicious cycle that further interferes with anti-tumor immunity and promotes tumor progression. Our pre-basic found excellent anti-tumor effects of c-di-AMP and RRx-001, respectively, and we further explored whether they could be combined synergistically for anti-tumor immunotherapy. We chose to load these two drugs on PVA-TSPBA hydrogel scaffolds that expressly release drugs within the tumor microenvironment by in situ injection. Studies have shown that c-di-AMP activates the STING pathway, enhances immune cell infiltration, and reverses tumor immunosuppression. Meanwhile, RRx-001 releases nitric oxide, which increases oxidative stress injury in tumor cells and promotes apoptosis. Moreover, the combination of the two presented more powerful pro-vascular normalization and reversed tumor immunosuppression than the drug alone. This study demonstrates a new design option for anti-tumor combination therapy and the potential of tumor environmentally responsive hydrogel scaffolds in combination with anti-tumor immunotherapy.


Subject(s)
Hydrogels , Membrane Proteins , Tumor Microenvironment , Animals , Hydrogels/administration & dosage , Tumor Microenvironment/drug effects , Cell Line, Tumor , Mice, Inbred C57BL , Immunotherapy/methods , Mice , Antineoplastic Agents/administration & dosage , Antineoplastic Agents/therapeutic use , Antineoplastic Agents/pharmacology , Mice, Inbred BALB C , Neoplasms/drug therapy , Neoplasms/immunology , Neoplasms/therapy , Nitric Oxide , Humans , Female , Apoptosis/drug effects
9.
Neurosurg Rev ; 47(1): 212, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38727935

ABSTRACT

We aimed to evaluate the relationship between imaging features, therapeutic responses (comparative cross-product and volumetric measurements), and overall survival (OS) in pediatric diffuse intrinsic pontine glioma (DIPG). A total of 134 patients (≤ 18 years) diagnosed with DIPG were included. Univariate and multivariate analyses were performed to evaluate correlations of clinical and imaging features and therapeutic responses with OS. The correlation between cross-product (CP) and volume thresholds in partial response (PR) was evaluated by linear regression. The log-rank test was used to compare OS patients with discordant therapeutic response classifications and those with concordant classifications. In univariate analysis, characteristics related to worse OS included lower Karnofsky, larger extrapontine extension, ring-enhancement, necrosis, non-PR, and increased ring enhancement post-radiotherapy. In the multivariate analysis, Karnofsky, necrosis, extrapontine extension, and therapeutic response can predict OS. A 25% CP reduction (PR) correlated with a 32% volume reduction (R2 = 0.888). Eight patients had discordant therapeutic response classifications according to CP (25%) and volume (32%). This eight patients' median survival time was 13.0 months, significantly higher than that in the non-PR group (8.9 months), in which responses were consistently classified as non-PR based on CP (25%) and volume (32%). We identified correlations between imaging features, therapeutic responses, and OS; this information is crucial for future clinical trials. Tumor volume may represent the DIPG growth pattern more accurately than CP measurement and can be used to evaluate therapeutic response.


Subject(s)
Brain Stem Neoplasms , Diffuse Intrinsic Pontine Glioma , Humans , Brain Stem Neoplasms/diagnostic imaging , Brain Stem Neoplasms/therapy , Brain Stem Neoplasms/mortality , Brain Stem Neoplasms/pathology , Male , Child , Female , Adolescent , Diffuse Intrinsic Pontine Glioma/therapy , Child, Preschool , Treatment Outcome , Magnetic Resonance Imaging , Infant , Retrospective Studies , Glioma/therapy , Glioma/pathology , Glioma/diagnostic imaging , Glioma/mortality
10.
J Transl Med ; 22(1): 198, 2024 02 23.
Article in English | MEDLINE | ID: mdl-38395884

ABSTRACT

BACKGROUND: Angiogenesis inhibitors have been identified to improve the efficacy of immunotherapy in recent studies. However, the delayed therapeutic effect of immunotherapy poses challenges in treatment planning. Therefore, this study aims to explore the potential of non-invasive imaging techniques, specifically intravoxel-incoherent-motion diffusion-weighted imaging (IVIM-DWI) and blood oxygenation level-dependent magnetic resonance imaging (BOLD-MRI), in detecting the anti-tumor response to the combination therapy involving immune checkpoint blockade therapy and anti-angiogenesis therapy in a tumor-bearing animal model. METHODS: The C57BL/6 mice were implanted with murine MC-38 cells to establish colon cancer xenograft model, and randomly divided into the control group, anti-PD-1 therapy group, and combination therapy group (VEGFR-2 inhibitor combined with anti-PD-1 antibody treatment). All mice were imaged before and, on the 3rd, 6th, 9th, and 12th day after administration, and pathological examinations were conducted at the same time points. RESULTS: The combination therapy group effectively suppressed tumor growth, exhibiting a significantly higher tumor inhibition rate of 69.96% compared to the anti-PD-1 group (56.71%). The f value and D* value of IVIM-DWI exhibit advantages in reflecting tumor angiogenesis. The D* value showed the highest correlation with CD31 (r = 0.702, P = 0.001), and the f value demonstrated the closest correlation with vessel maturity (r = 0.693, P = 0.001). While the BOLD-MRI parameter, R2* value, shows the highest correlation with Hif-1α(r = 0.778, P < 0.001), indicating the capability of BOLD-MRI to evaluate tumor hypoxia. In addition, the D value of IVIM-DWI is closely related to tumor cell proliferation, apoptosis, and infiltration of lymphocytes. The D value was highly correlated with Ki-67 (r = - 0.792, P < 0.001), TUNEL (r = 0.910, P < 0.001) and CD8a (r = 0.918, P < 0.001). CONCLUSIONS: The combination of VEGFR-2 inhibitors with PD-1 immunotherapy shows a synergistic anti-tumor effect on the mouse colon cancer model. IVIM-DWI and BOLD-MRI are expected to be used as non-invasive approaches to provide imaging-based evidence for tumor response detection and efficacy evaluation.


Subject(s)
Colonic Neoplasms , Immune Checkpoint Inhibitors , Programmed Cell Death 1 Receptor , Animals , Humans , Mice , Colonic Neoplasms/diagnostic imaging , Colonic Neoplasms/drug therapy , Diffusion Magnetic Resonance Imaging/methods , Magnetic Resonance Imaging/methods , Mice, Inbred C57BL , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Vascular Endothelial Growth Factor Receptor-2/antagonists & inhibitors , Immune Checkpoint Inhibitors/therapeutic use
11.
J Neuroimaging ; 34(3): 339-347, 2024.
Article in English | MEDLINE | ID: mdl-38296794

ABSTRACT

BACKGROUND AND PURPOSE: Hemorrhagic transformation (HT) is a common complication of endovascular thrombectomy (EVT) in patients with acute ischemic stroke (AIS). Our study aims to investigate the clinical and imaging predictors of HT and symptomatic intracranial hemorrhage (sICH) in patients who underwent EVT. METHODS: A retrospective analysis of 118 patients undergoing EVT for acute anterior circulation stroke was performed. Potential clinical and imaging predictors of all patients were collected and multivariate logistic regression was performed. The risk prediction system was constructed according to the multivariate logistic regression results. RESULTS: The incidence of HT and sICH after EVT were 46.6% and 15.3%, respectively. The multivariate logistic regression results showed that Alberta Stroke Program Early CT Score (ASPECTS) (p = .001, odds ratio [OR] = 0.367, 95% [confidence interval] CI, 0.201-0.670), collateral status (p<.001, OR = 0.117, 95% CI, 0.042-0.325), relative cerebral blood flow (CBF) ratio (p = .025, OR = 0.943, 95% CI, 0.895-0.993), and blood glucose on admission (p = .012, OR = 1.258, 95% CI, 1.053-1.504) were associated with HT. While for sICH, collateral circulation (p = .007, OR = 0.148, 95% CI, 0.037-0.589), ASPECTS (p = .033, OR = 0.510, 95% CI, 0.274-0.946), and blood glucose (p = .005, OR = 1.304, 95% CI, 1.082-1.573) were independent factors. The predictive model for HT after EVT was established, and the sensitivity and specificity of it were 90.9% and 79.4%, respectively, with the area under the curve of 90.0% (84.5%-95.4%). CONCLUSION: Collateral status, ASPECTS, relative CBF ratio, and blood glucose on admission were predictors for HT in AIS patients, while collateral status, ASPECTS, and blood glucose on admission were also predictors for sICH. In addition, the established predictive model showed good diagnostic value for prediction of HT after EVT.


Subject(s)
Endovascular Procedures , Ischemic Stroke , Thrombectomy , Humans , Male , Female , Ischemic Stroke/diagnostic imaging , Ischemic Stroke/surgery , Retrospective Studies , Aged , Middle Aged , Intracranial Hemorrhages/diagnostic imaging , Intracranial Hemorrhages/etiology , Risk Factors , Postoperative Complications/diagnostic imaging , Postoperative Complications/etiology , Predictive Value of Tests , Aged, 80 and over , Cerebral Hemorrhage/diagnostic imaging , Cerebral Hemorrhage/etiology
12.
Mater Today Bio ; 23: 100839, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38024837

ABSTRACT

STING (Stimulator of Interferon Genes) agonists have emerged as promising agents in the field of cancer immunotherapy, owing to their excellent capacity to activate the innate immune response and combat tumor-induced immunosuppression. This review provides a comprehensive exploration of the strategies employed to develop effective formulations for STING agonists, with particular emphasis on versatile nano-delivery systems. The recent advancements in delivery systems based on lipids, natural/synthetic polymers, and proteins for STING agonists are summarized. The preparation methodologies of nanoprecipitation, self-assembly, and hydrogel, along with their advantages and disadvantages, are also discussed. Furthermore, the challenges and opportunities in developing next-generation STING agonist delivery systems are elaborated. This review aims to serve as a reference for researchers in designing novel and effective STING agonist delivery systems for cancer immunotherapy.

13.
Int J Nanomedicine ; 18: 6001-6019, 2023.
Article in English | MEDLINE | ID: mdl-37901361

ABSTRACT

Background: Olaparib, a poly (adenosine diphosphate-ribose) polymerase (PARP) inhibitor has demonstrated promising efficacy in patients with triple-negative breast cancer (TNBC) carrying breast cancer gene (BRCA) mutations. However, its impact on BRCA wild-type (BRCAwt) TNBC is limited. Hence, it is crucial to sensitize BRCAwt TNBC cells to olaparib for effective clinical practice. Novobiocin, a DNA polymerase theta (POLθ) inhibitor, exhibits sensitivity towards BRCA-mutated cancer cells that have acquired resistance to PARP inhibitors. Although both of these DNA repair inhibitors demonstrate therapeutic efficacy in BRCA-mutated cancers, their nanomedicine formulations' antitumor effects on wild-type cancer remain unclear. Furthermore, ensuring effective drug accumulation and release at the cancer site is essential for the clinical application of olaparib. Materials and Methods: Herein, we designed a progressively disassembled nanosystem of DNA repair inhibitors as a novel strategy to enhance the effectiveness of olaparib in BRCAwt TNBC. The nanosystem enabled synergistic delivery of two DNA repair inhibitors olaparib and novobiocin, within an ultrathin silica framework interconnected by disulfide bonds. Results: The designed nanosystem demonstrated remarkable capabilities, including long-term molecular storage and specific drug release triggered by the tumor microenvironment. Furthermore, the nanosystem exhibited potent inhibitory effects on cell viability, enhanced accumulation of DNA damage, and promotion of apoptosis in BRCAwt TNBC cells. Additionally, the nanosystem effectively accumulated within BRCAwt TNBC, leading to significant growth inhibition and displaying vascular regulatory abilities as assessed by magnetic resonance imaging (MRI). Conclusion: Our results provided the inaugural evidence showcasing the potential of a progressively disassembled nanosystem of DNA repair inhibitors, as a promising strategy for the treatment of BRCA wild-type triple-negative breast cancer.


Subject(s)
Triple Negative Breast Neoplasms , Humans , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/genetics , Triple Negative Breast Neoplasms/pathology , Novobiocin/pharmacology , Novobiocin/therapeutic use , DNA Repair , Poly(ADP-ribose) Polymerases/metabolism , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Poly(ADP-ribose) Polymerase Inhibitors/therapeutic use , Cell Line, Tumor , Tumor Microenvironment
14.
Int J Nanomedicine ; 18: 3663-3694, 2023.
Article in English | MEDLINE | ID: mdl-37427368

ABSTRACT

Glioblastoma (GBM), a highly aggressive form of brain cancer, is considered one of the deadliest cancers, and even with the most advanced medical treatments, most affected patients have a poor prognosis. However, recent advances in nanotechnology offer promising avenues for the development of versatile therapeutic and diagnostic nanoplatforms that can deliver drugs to brain tumor sites through the blood-brain barrier (BBB). Despite these breakthroughs, the use of nanoplatforms in GBM therapy has been a subject of great controversy due to concerns over the biosafety of these nanoplatforms. In recent years, biomimetic nanoplatforms have gained unprecedented attention in the biomedical field. With advantages such as extended circulation times, and improved immune evasion and active targeting compared to conventional nanosystems, bionanoparticles have shown great potential for use in biomedical applications. In this prospective article, we endeavor to comprehensively review the application of bionanomaterials in the treatment of glioma, focusing on the rational design of multifunctional nanoplatforms to facilitate BBB infiltration, promote efficient accumulation in the tumor, enable precise tumor imaging, and achieve remarkable tumor suppression. Furthermore, we discuss the challenges and future trends in this field. Through careful design and optimization of nanoplatforms, researchers are paving the way toward safer and more effective therapies for GBM patients. The development of biomimetic nanoplatform applications for glioma therapy is a promising avenue for precision medicine, which could ultimately improve patient outcomes and quality of life.


Subject(s)
Brain Neoplasms , Glioblastoma , Glioma , Humans , Drug Delivery Systems/methods , Prospective Studies , Quality of Life , Glioma/drug therapy , Glioblastoma/drug therapy , Glioblastoma/pathology , Brain Neoplasms/drug therapy , Brain Neoplasms/pathology
15.
Pharmaceuticals (Basel) ; 16(2)2023 Feb 07.
Article in English | MEDLINE | ID: mdl-37259396

ABSTRACT

New nanotechnologies for imaging molecules are widely being applied to visualize the expression of specific molecules (e.g., ions, biomarkers) for disease diagnosis. Among various nanoplatforms, nanozymes, which exhibit enzyme-like catalytic activities in vivo, have gained tremendously increasing attention in molecular imaging due to their unique properties such as diverse enzyme-mimicking activities, excellent biocompatibility, ease of surface tenability, and low cost. In addition, by integrating different nanoparticles with superparamagnetic, photoacoustic, fluorescence, and photothermal properties, the nanoenzymes are able to increase the imaging sensitivity and accuracy for better understanding the complexity and the biological process of disease. Moreover, these functions encourage the utilization of nanozymes as therapeutic agents to assist in treatment. In this review, we focus on the applications of nanozymes in molecular imaging and discuss the use of peroxidase (POD), oxidase (OXD), catalase (CAT), and superoxide dismutase (SOD) with different imaging modalities. Further, the applications of nanozymes for cancer treatment, bacterial infection, and inflammation image-guided therapy are discussed. Overall, this review aims to provide a complete reference for research in the interdisciplinary fields of nanotechnology and molecular imaging to promote the advancement and clinical translation of novel biomimetic nanozymes.

16.
Eur Radiol ; 33(8): 5357-5367, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37171492

ABSTRACT

OBJECTIVES: To evaluate the multiparametric diagnostic performance with non-enhancing tumor volume, apparent diffusion coefficient (ADC), and arterial spin labeling (ASL) to differentiate between atypical primary central nervous system lymphoma (PCNSL) and glioblastoma (GBM). METHODS: One hundred and fifty-eight patients with pathologically confirmed typical PCNSL (n = 59), atypical PCNSL (hemorrhage, necrosis, or heterogeneous contrast enhancement, n = 29), and GBM (n = 70) were selected. Relative minimum ADC (rADCmin), mean (rADCmean), maximum (rADCmax), and rADCmax-min (rADCdif) were obtained by standardization of the contralateral white matter. Maximum cerebral blood flow (CBFmax) was obtained according to the ASL-CBF map. The regions of interests (ROIs) were manually delineated on the inner side of the tumor to further generate a 3D-ROI and obtain the non-enhancing tumor (nET) volume. The area under the curve (AUC) was used to evaluate the diagnostic performance. RESULTS: Atypical PCNSLs showed significantly lower rADCmax, rADCmean, and rADCdif than that of GBMs. GBMs showed significantly higher CBFmax and nET volume ratios than that of atypical PCNSLs. Combined three-variable models with rADCmean, CBFmax, and nET volume ratio were superior to one- and two-variable models. The AUC of the three-variable model was 0.96, and the sensitivity and specificity were 90% and 96.55%, respectively. CONCLUSION: The combined evaluation of rADCmean, CBFmax, and nET volume allowed for reliable differentiation between atypical PCNSL and GBM. KEY POINTS: • Atypical PCNSL is easily misdiagnosed as glioblastoma, which leads to unnecessary surgical resection. • The nET volume, ADC, and ASL-derived parameter (CBF) were lower for atypical PCNSL than that for glioblastoma. • The combination of multiple parameters performed well (AUC = 0.96) in the discrimination between atypical PCNSL and glioblastoma.


Subject(s)
Brain Neoplasms , Glioblastoma , Lymphoma , Humans , Glioblastoma/diagnostic imaging , Glioblastoma/pathology , Brain Neoplasms/diagnostic imaging , Brain Neoplasms/pathology , Spin Labels , Lymphoma/diagnostic imaging , Lymphoma/pathology , Diagnosis, Differential , Central Nervous System/pathology , Magnetic Resonance Imaging
17.
Pharmaceuticals (Basel) ; 16(5)2023 Apr 23.
Article in English | MEDLINE | ID: mdl-37242423

ABSTRACT

Chemical exchange saturation transfer (CEST) MRI is a versatile molecular imaging approach that holds great promise for clinical translation. A number of compounds have been identified as suitable for performing CEST MRI, including paramagnetic CEST (paraCEST) agents and diamagnetic CEST (diaCEST) agents. DiaCEST agents are very attractive because of their excellent biocompatibility and potential for biodegradation, such as glucose, glycogen, glutamate, creatine, nucleic acids, et al. However, the sensitivity of most diaCEST agents is limited because of small chemical shifts (1.0-4.0 ppm) from water. To expand the catalog of diaCEST agents with larger chemical shifts, herein, we have systematically investigated the CEST properties of acyl hydrazides with different substitutions, including aromatic and aliphatic substituents. We have tuned the labile proton chemical shifts from 2.8-5.0 ppm from water while exchange rates varied from ~680 to 2340 s-1 at pH 7.2, which allows strong CEST contrast on scanners down to B0 = 3 T. One acyl hydrazide, adipic acid dihydrazide (ADH), was tested on a mouse model of breast cancer and showed nice contrast in the tumor region. We also prepared a derivative, acyl hydrazone, which showed the furthest shifted labile proton (6.4 ppm from water) and excellent contrast properties. Overall, our study expands the catalog of diaCEST agents and their application in cancer diagnosis.

18.
Pharmaceutics ; 15(4)2023 Apr 11.
Article in English | MEDLINE | ID: mdl-37111692

ABSTRACT

Abnormal tumor vasculature and a hypoxic tumor microenvironment (TME) limit the effectiveness of conventional cancer treatment. Recent studies have shown that antivascular strategies that focus on antagonizing the hypoxic TME and promoting vessel normalization effectively synergize to increase the antitumor efficacy of conventional therapeutic regimens. By integrating multiple therapeutic agents, well-designed nanomaterials exhibit great advantages in achieving higher drug delivery efficiency and can be used as multimodal therapy with reduced systemic toxicity. In this review, strategies for the nanomaterial-based administration of antivascular therapy combined with other common tumor treatments, including immunotherapy, chemotherapy, phototherapy, radiotherapy, and interventional therapy, are summarized. In particular, the administration of intravascular therapy and other therapies with the use of versatile nanodrugs is also described. This review provides a reference for the development of multifunctional nanotheranostic platforms for effective antivascular therapy in combined anticancer treatments.

19.
J Adv Res ; 43: 205-218, 2023 01.
Article in English | MEDLINE | ID: mdl-36585109

ABSTRACT

Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease characterized by oxidative stress that triggers motor neurons loss in the brain and spinal cord. However, the mechanisms underlying the exact role of oxidative stress in ALS-associated neural degeneration are not definitively established. Oxidative stress-generated phospholipid peroxides are known to have extensive physiological and pathological consequences to tissues. Here, we discovered that the deficiency of glutathione peroxidase 4 (GPX4), an essential antioxidant peroxidase, led to the accumulation of phospholipid peroxides and resulted in a loss of motor neurons in spinal cords of ALS mice. Mutant human SOD1G93A transgenic mice were intrathecally injected with neuron-targeted adeno-associated virus (AAV) expressing GPX4 (GPX4-AAV) or phospholipid peroxidation inhibitor, ferrostatin-1. The results showed that impaired motor performance and neural loss induced by SOD1G93A toxicity in the lumbar spine were substantially alleviated by ferrostatin-1 treatment and AAV-mediated GPX4 delivery. In addition, the denervation of neuron-muscle junction and spinal atrophy in ALS mice were rescued by neural GPX4 overexpression, suggesting that GPX4 is essential for the motor neural maintenance and function. In comparison, conditional knockdown of Gpx4 in the spinal cords of Gpx4fl/fl mice triggered an obvious increase of phospholipid peroxides and the occurrence of ALS-like motor phenotype. Altogether, our findings underscore the importance of GPX4 in maintaining phospholipid redox homeostasis in the spinal cord and presents GPX4 as an attractive therapeutic target for ALS treatment.


Subject(s)
Amyotrophic Lateral Sclerosis , Glutathione Peroxidase , Neurodegenerative Diseases , Phospholipids , Animals , Humans , Mice , Amyotrophic Lateral Sclerosis/genetics , Amyotrophic Lateral Sclerosis/metabolism , Amyotrophic Lateral Sclerosis/pathology , Glutathione Peroxidase/genetics , Glutathione Peroxidase/metabolism , Mice, Transgenic , Motor Neurons/metabolism , Motor Neurons/pathology , Neurodegenerative Diseases/genetics , Neurodegenerative Diseases/pathology , Peroxides , Superoxide Dismutase/genetics , Superoxide Dismutase/metabolism , Superoxide Dismutase-1/genetics , Superoxide Dismutase-1/metabolism , Phospholipids/metabolism
20.
Front Public Health ; 10: 1044550, 2022.
Article in English | MEDLINE | ID: mdl-36466449

ABSTRACT

Background: Chinese health insurance system faces resource distribution challenges. A patient-centric approach allows decision-makers to be keenly aware of optimized medical resource allocation. Objective: This study aims to use the discrete choice model to determine the main factors affecting the healthcare preferences of the general Chinese population and their weights in the three scenarios (chronic non-communicable diseases, acute infectious diseases, and major diseases). Methods: This study firstly identified the key factors affecting people's healthcare preferences through literature review and qualitative interviews, and then designed the DCE questionnaire. An online questionnaire produced by Lighthouse Studio (version 9.9.1) software was distributed to voluntary respondents recruited from mainland China's entire population from January 2021 to June 2021. Participants were required to answer a total of 21 questions of three scenarios in the questionnaire. The multinomial logit model and latent class model were used to analyze the collected data. Results: A total of 4,156 participants from mainland China were included in this study. The multinomial logit and latent class model analyses showed that medical insurance reimbursement is the most important attribute in all three disease scenarios. In the scenario of "non-communicable diseases," the attributes that participants valued were, from the most to the least, medical insurance reimbursement (45.0%), hospital-level (21.6%), distance (14.4%), cost (9.7%), waiting time (8.3%), and care provider (1.0%). As for willingness to pay (WTP), participants were willing to pay 204.5 yuan, or 1,743.8 yuan, to change from private hospitals or community hospitals to tertiary hospitals, respectively. Conclusions: This study explores the healthcare preferences of Chinese residents from a new perspective, which can provide theoretical reference for the refinement of many disease medical reimbursement policies, such as developing different reimbursement ratios for various common diseases and realizing rational configuration of medical resources.


Subject(s)
Noncommunicable Diseases , Humans , Asian People , Hospitals, Community , China , Delivery of Health Care
SELECTION OF CITATIONS
SEARCH DETAIL