Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters








Publication year range
1.
J Phys Chem A ; 128(39): 8305-8311, 2024 Oct 03.
Article in English | MEDLINE | ID: mdl-39292919

ABSTRACT

We report the coexistence of anti-conformers and energetically unfavorable syn-conformers of 2,3-, 2,4-, 2,5-, and 2,6-difluorobenzaldehyde in the gas phase using broadband chirped-pulse Fourier transform microwave (CP-FTMW) spectroscopy. The rotational spectra of monosubstituted 13C isotopologues of the anti-conformers have also been assigned in natural abundance, which were used to derive their vibrationally averaged geometries and semi-experimental equilibrium structures. The energy differences between anti- and syn-conformations are estimated to be 10.9, 11.3, and 12.9 kJ/mol for 2,3-, 2,4-, and 2,5-difluorobenzaldehyde, respectively, at the theoretical level of DLPNO-CCSD(T)/def2-TZVP. Despite the steric repulsion caused by the close proximity between the oxygen atom of the aldehyde group and the ortho-substituted fluorine atom, our experimental results indicate the planarity of the syn-conformations. The frequencies of the large amplitude torsion between the phenyl and aldehyde groups have been estimated by experimental inertial defects, which agree with theoretical calculation results.

2.
Molecules ; 29(15)2024 Jul 23.
Article in English | MEDLINE | ID: mdl-39124850

ABSTRACT

The rotational spectra of the 1:1 complex formed by acrolein and methanol and its deuterated isotopologues have been analyzed. Two stable conformations in which two hydrogen bonds between the two moieties are formed were detected. The rotational lines show a hyperfine structure due to the methyl group internal rotation in the complex and the V3 barriers hindering the motion were determined as 2.629(5) kJ mol-1 and 2.722(5) kJ mol-1 for the two conformations, respectively. Quantum mechanical calculations at the MP2/aug-cc-pVTZ level and comprehensive analysis of the intermolecular interactions, utilizing NCI and SAPT approaches, highlight the driving forces of the interactions and allow the determination of the binding energies of complex formation.

3.
Phys Chem Chem Phys ; 26(16): 12530-12536, 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38619876

ABSTRACT

Trifluoroacetylacetone (TFAA) has two enol forms, which can switch to each other via proton transfer. While much attention has been paid to their conformational preferences, the influence of microsolvation on regulating the proton position remains unexplored. Herein, we report the rotational spectra of trifluoroacetylacetone-(water)n (n = 1-3) investigated by chirped pulse Fourier transform microwave spectroscopy in the 2-8 GHz frequency range. Two conformers were identified for both TFAA-H2O and TFAA-(H2O)2, while only one conformer was characterized for TFAA-(H2O)3. The results indicate that water binding on the CH3 side stabilizes the enolF form, whereas water binding on the CF3 side stabilizes the enolH form. The enolF form predominates over the enolH form in these hydrated complexes, which contrasts with the fact that only enolH exists in isolated TFAA. EnolH becomes preferred only when water inserts itself into the intramolecular hydrogen bond. Instanton theory calculations reveal that the proton transfer reaction is dominated by quantum tunneling at low temperatures, leading to the stable existence of only one enol form in each configuration of the hydrated clusters.

4.
Pflugers Arch ; 476(5): 821-831, 2024 May.
Article in English | MEDLINE | ID: mdl-38416255

ABSTRACT

Obesity has been linked with the impairment of spatial memory and synaptic plasticity but the molecular mechanisms remained unidentified. Since glutamatergic transmission and NMDA receptor neural pathways in hippocampal dentate gyrus (DG) are essential in the learning and memory, we aimed to investigate glutamate (Glu) and NMDA receptor signaling of DG in spatial learning and memory in diet-induced obesity (DIO) rats. Spatial learning and memory were assessed via Morris water maze (MWM) test on control (Ctr) and DIO rats. Extracellular concentration of Glu in the DG was determined using in vivo microdialysis and HPLC. The protein expressions of NMDA receptor subunit 2B (NR2B), brain-derived neurotrophic factor (BDNF), the activation of calcium/calmodulin-dependent kinase II (CaMKII) and cAMP-response-element-binding protein (CREB) in the DG were observed by western blot. Spatial learning and memory were impaired in DIO rats compared to those of Ctr. NR2B expression was increased, while BDNF expression and CaMKII and CREB activation were decreased in DG of DIO rats. Extracellular concentration of Glu was increased in Ctr on the 3rd and 4th days of the MWM test, but significant further increment was observed in DIO rats. Microinjection of an NMDA antagonist (MK-801) into the DG reversed spatial learning and memory impairment. Such effects were accompanied by greater BDNF expression and CaMKII/CREB activation in the DG of DIO rats. In conclusion, the enhancement of Glu-NMDA receptor transmission in the hippocampal DG contributes to the impairment of spatial learning and memory in DIO rats, maybe via the modulation of CaMKII-CREB-BDNF signaling pathway.


Subject(s)
Dentate Gyrus , Glutamic Acid , Obesity , Receptors, N-Methyl-D-Aspartate , Spatial Learning , Animals , Male , Rats , Brain-Derived Neurotrophic Factor/metabolism , Calcium-Calmodulin-Dependent Protein Kinase Type 2/metabolism , Cyclic AMP Response Element-Binding Protein/metabolism , Dentate Gyrus/metabolism , Glutamic Acid/metabolism , Maze Learning , Memory Disorders/metabolism , Memory Disorders/etiology , Obesity/metabolism , Rats, Sprague-Dawley , Receptors, N-Methyl-D-Aspartate/metabolism , Signal Transduction/physiology , Spatial Memory , Synaptic Transmission
5.
J Phys Chem Lett ; 14(23): 5335-5342, 2023 Jun 15.
Article in English | MEDLINE | ID: mdl-37272941

ABSTRACT

We employed microwave spectroscopy to investigate the 1:1 complexes of hexafluorobenzene with trimethylamine and quinuclidine, respectively. These complexes exhibit a C3v symmetry and are stabilized by nitrogen lone pair···π-hole interactions along the C3 axes. The N···π-center distances were determined to be 3.110(1) and 3.040(2) Å, respectively, which are shorter than that of hexafluorobenzene-ammonia at 3.2685(3) Å. Additionally, the strength of the intermolecular interaction increases with cluster size. While it was initially expected that the electron-donating effect of alkyl groups was responsible for changing the N···π interaction, the symmetry-adapted perturbation theory analysis revealed that, from hexafluorobenzene-ammonia to both hexafluorobenzene-alkylamines, electrostatic interaction actually decreases while dispersion interaction increases and becomes dominant. Interestingly, dispersion interaction decreases while electrostatic interaction increases from C6F6-N(CH3)3 to C6F6-NC7H13. The splitting pattern of the spectra indicates hexafluorobenzene rotates freely relative to its partners along the axis of the N···π-hole interactions.

6.
J Am Chem Soc ; 2023 Feb 10.
Article in English | MEDLINE | ID: mdl-36762446

ABSTRACT

The investigation on the preferred arrangement and intermolecular interactions of gas phase solute-water clusters gives insights into the intermolecular potentials that govern the structure and dynamics of the aqueous solutions. Here, we report the investigation of hydrated coordination networks of benzaldehyde-(water)n (n = 1-6) clusters in a pulsed supersonic expansion using broadband rotational spectroscopy. Benzaldehyde (PhCHO) is the simplest aromatic aldehyde that involves both hydrophilic (CHO) and hydrophobic (phenyl ring) functional groups, which can mimic molecules of biological significance. For the n = 1-3 clusters, the water molecules are connected around the hydrophilic CHO moiety of benzaldehyde through a strong CO···HO hydrogen bond and weak CH···OH hydrogen bond(s). For the larger clusters, the spectra are consistent with the structures in which the water clusters are coordinated on the surface of PhCHO with both the hydrophilic CHO and hydrophobic phenyl ring groups being involved in the bonding interactions. The presence of benzaldehyde does not strongly interfere with the cyclic water tetramer and pentamer, which retain the same structure as in the pure water cluster. The book isomer instead of cage or prism isomers of the water hexamer is incorporated into the microsolvated cluster. The PhCHO molecule deviates from the planar structure upon sequential addition of water molecules. The PhCHO-(H2O)1-6 clusters may serve as a simple model system in understanding the solute-water interactions of biologically relevant molecules in an aqueous environment.

7.
Mol Biotechnol ; 65(1): 72-83, 2023 Jan.
Article in English | MEDLINE | ID: mdl-35819746

ABSTRACT

Lung cancer represents the most prevalent cancer worldwide and causes the death of many patients. Cancer stem cells (CSCs), a subpopulation of cancer cells, have the capacities of self-renewal, unlimited proliferation, and multiple differentiation potential. The purpose of this study was to explore the potential role of long noncoding RNA (lncRNA) MNX1-AS1 on maintaining the stemness of CSC in lung cancer. CSCs were firstly sorted by flow cytometry. After the determination of the target of the present study using Gene Expression Omnibus dataset, MNX1-AS1was found to be highly expressed in lung cancer tissues and cells. Deletion of MNX1-AS1 inhibited proliferation, migration, invasion and sphere-forming abilities of CSC. Furthermore, subcellular fractionation, fluorescence in situ hybridization, RNA immunoprecipitation, and dual-luciferase experiments demonstrated that MNX1-AS1 recruited the transcription factor POU domain class 2 transcription factor 2 (POU2F2) to the nucleus and activated the myosin IG (MYO1G) expression. MYO1G overexpression partially reversed the si-MNX1-AS1-decreased stemness of CSCs. Finally, MNX1-AS1 suppression significantly repressed the growth of xenografts in vivo. Our study highlights the importance of the MNX1-AS1/POU2F2/MYO1G axis in stem cell-like properties of lung cancer cells.


Subject(s)
Lung Neoplasms , MicroRNAs , RNA, Long Noncoding , Humans , Cell Line, Tumor , Cell Movement/genetics , Cell Proliferation/genetics , Gene Expression Regulation, Neoplastic , Homeodomain Proteins/genetics , Homeodomain Proteins/metabolism , In Situ Hybridization, Fluorescence , Lung Neoplasms/genetics , MicroRNAs/genetics , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Transcription Factors/genetics
8.
J Phys Chem A ; 126(39): 6882-6889, 2022 Oct 06.
Article in English | MEDLINE | ID: mdl-36149258

ABSTRACT

The interaction of dimethyl sulfoxide with water has been investigated by Fourier-transform microwave spectroscopy of the 1:1 complex and its isotopologues, complemented with quantum chemical calculations. The rotational spectra of 34S and 13C isotopologues in natural abundance and the H218O and deuterated water enriched isotopologues have been measured, allowing a partial structure determination and establishing the position of water in the complex. In the most stable conformation water was found to be the donor of a primary OH···OS bond to the oxygen atom of dimethyl sulfoxide and acceptor of two weak CH···OH bonds with the methyl hydrogen atoms of dimethyl sulfoxide. From the structural determination confirmed by quantum chemical calculations, the water molecule lies in the symmetry plane of dimethyl sulfoxide, and the complex has an overall Cs symmetry. The experimental findings are supported by atoms in molecules and symmetry-adapted perturbation theories, which allowed for determining the hydrogen bond and intermolecular interaction energies, respectively.

9.
Phys Chem Chem Phys ; 23(33): 18093-18101, 2021 Sep 07.
Article in English | MEDLINE | ID: mdl-34397049

ABSTRACT

Enhancement of the σ-hole on the halogen atom of aryl halides due to perfluorination of the ring is demonstrated by use of the Extended Townes-Dailey (ETD) model coupled to a Natural Atomic Orbital Bond analysis on two perfluorinated aryl halides (C6F5Cl and C6F5Br) and their hydrogenated counterparts. The ETD analysis, which quantifies the halogen p-orbitals populations, relies on the nuclear quadrupole coupling constants which in this work are accurately determined experimentally from the rotational spectra. The rotational spectra investigated by Fourier-transform microwave spectroscopy performed in supersonic expansion are reported for the parent species of C6F5Cl and C6F5Br and their 13C, 37Cl or 81Br substituted isotopologues observed in natural abundance. The experimentally determined rotational constants combined with theoretical data at the MP2/aug-cc-pVTZ level provide precise structural information from which an elongation of the ring along its symmetry axis due to perfluorination is proved.

10.
Eur J Pharmacol ; 887: 173434, 2020 Nov 15.
Article in English | MEDLINE | ID: mdl-32763299

ABSTRACT

Bombyx mori antimicrobial peptides (BmAMPs) are important effectors in silkworm immune system. They can inhibit and kill a variety of bacteria and fungi. Recent studies have shown that some kinds of BmAMPs exert strong inhibitory effects on a variety of tumor cells. In the present study, the antitumor activity of BmAMP Cecropin A (BmCecA) and BmAMP Cecropin D (BmCecD) was investigated against human esophageal cancer cells and their antitumor mechanism preliminary explored. Cell Counting Kit-8 and colony formation assays indicated that BmCecA and BmCecD suppressed cell proliferation and reduced colony formation of both Eca109 and TE13 cells in a dose-dependent manner, but exhibited no inhibitory effect on normal human embryonic kidney 293T cells. Wound healing and invasion experiments indicated that both BmCecA and BmCecD inhibited migration and invasion of Eca109 and TE13 cells in vitro. Annexin V/propidium iodide staining and flow cytometry detection suggested that BmCecA induced the apoptosis of Eca109 cells in a dose-dependent manner. RT-qPCR and western blot analysis showed that BmCecA induced apoptosis of Eca109 cells through the activation of a mitochondria-mediated caspase pathway, the upregulation of B-cell lymphoma 2 (Bcl-2)-associated X protein and the downregulation of Bcl-2. In addition, BmCecA significantly inhibited the growth of xenograft tumors in Eca109-bearing mice. These results suggested that BmCecA and BmCecD might serve as potential therapeutic agents for the treatment of cancer in the future.


Subject(s)
Bombyx , Cecropins/therapeutic use , Esophageal Neoplasms/prevention & control , Pore Forming Cytotoxic Proteins/therapeutic use , Amino Acid Sequence , Animals , Apoptosis/drug effects , Apoptosis/physiology , Cecropins/isolation & purification , Cecropins/pharmacology , Cell Line, Tumor , Cell Movement/drug effects , Cell Movement/physiology , Esophageal Neoplasms/pathology , Female , HEK293 Cells , Humans , Mice , Mice, Inbred BALB C , Mice, Nude , Pore Forming Cytotoxic Proteins/isolation & purification , Pore Forming Cytotoxic Proteins/pharmacology
11.
Insect Mol Biol ; 29(1): 66-76, 2020 02.
Article in English | MEDLINE | ID: mdl-31301266

ABSTRACT

Storage proteins are haemolymph-specific proteins in insects, mainly synthesized in the fat body, released into the haemolymph, and then selectively reabsorbed by the fat body before pupation. These storage proteins play an important role in insect metamorphosis and egg development. Some of these storage proteins are responsive to pathogen infection and can even suppress pathogen multiplication. However, the mechanisms of the physiological, biochemical and immune-responsive functions of storage proteins remain unclear. In this study, the expression patterns of Bombyx mori storage protein 1 (BmSP1) during the larval stage were analysed. Then, BmSP1 protein fused with enhanced green fluorescent protein (EGFP) was successfully expressed in a B. mori baculovirus vector expression system. Quantitative real-time PCR showed that the expression level of BmSP1 increased with the advance of instars and reached the highest level in the fifth instar, especially in the fat body. Recombinant BmSP1 expressed in silkworm larvae inhibited haemolymph melanization. Then, proteins that interact with BmSP1 were identified with EGFP used as an antigenic determinant by co-immunoprecipitation. A 30 kDa low molecular weight lipoprotein PBMHP-6 precursor (BmLP6) was shown to interact with BmSP1. Yeast two-hybrid experiments confirmed the interaction between BmSP1 and BmLP6. The results obtained in this study will be helpful for further study of the functions of BmSP1 and BmLP6 in the regulatory network of silkworm development and innate immunity.


Subject(s)
Bombyx/growth & development , Bombyx/metabolism , Insect Proteins/metabolism , Animals , Bombyx/genetics , Bombyx/immunology , Cell Line , Fat Body/metabolism , Green Fluorescent Proteins , Hemolymph/immunology , Immunity, Innate , Insect Proteins/genetics , Larva/genetics , Larva/immunology , Larva/metabolism , Recombinant Proteins
12.
J Invertebr Pathol ; 163: 34-42, 2019 05.
Article in English | MEDLINE | ID: mdl-30825479

ABSTRACT

Storage proteins in the 30 K family are ubiquitous in the hemolymph of insects and play important roles in adult metamorphosis, development, egg formation, carrier transport and even host immunity. Some studies have shown that the 30 K proteins can inhibit apoptosis and have certain antifungal effects. The silkworm protein Bm30K-19G1 is a low molecular weight apolipoprotein that is abundant in hemolymph of fifth instar larvae. Our previous transcriptome sequencing, real-time PCR analysis and proteomic studies showed that the expression level of the 30 K protein gene was significantly up-regulated in the silkworm infected with Beauveria bassiana. In this study, the ORF sequence of Bm30K-19G1 was amplified by PCR. The sequence is 1311 bp in length and encodes a 436 amino acid peptide. Bm30K-19G1 was expressed in all tested tissues of fifth instar larvae, with highest expression in fat body and the lowest expression in the midgut. Bm30K-19G1 protein was successfully expressed in the prokaryotic expression system using pET-28a(+) as vector and E. coli Arctic Express (DE3) as the expression bacterium strain. The expressed recombinant Bm30K-19G1 protein has an inhibitory effect on the conidial germination and hyphal growth of B. bassiana. Bm30K-19G1 also inhibited the growth and reproduction of B. bassiana in vivo; the median lethal time of infected silkworms was postponed by 6.4 h and the time for death of all infected larvae was postponed by 10 h. The results indicated that the silkworm storage protein 30K-19G1 is an antifungal protein against B. bassiana and help to elucidate the molecular mechanism of silkworm resistance against B. bassiana.


Subject(s)
Antifungal Agents/pharmacology , Beauveria/drug effects , Bombyx/microbiology , Insect Proteins/metabolism , Recombinant Proteins/pharmacology , Animals , Antifungal Agents/metabolism , Beauveria/growth & development , Beauveria/isolation & purification , Beauveria/metabolism , Bombyx/immunology , Cloning, Molecular , Disease Resistance/genetics , Escherichia coli , Genes, Insect/immunology , Genes, Insect/physiology , Hemolymph/metabolism , Insect Proteins/genetics , Larva/metabolism , Larva/microbiology , Recombinant Proteins/biosynthesis , Recombinant Proteins/metabolism
13.
Gene ; 595(1): 69-76, 2016 Dec 20.
Article in English | MEDLINE | ID: mdl-27693371

ABSTRACT

Innate immunity was critical in insects defensive system and able to be induced by Janus kinase/signal transducer and activator of transcription cascade transduction (JAK/STAT) signaling pathway. Currently, it had been identified many JAK/STAT signaling pathway-related genes in silkworm, but little function was known on insect innate immunity. To explore the roles of JAK/STAT pathway in antifungal immune response in silkworm (Bombyx mori) against Beauveria bassiana infection, the expression patterns of B. mori C-type lectin 5 (BmCTL5) and genes encoding 6 components of JAK/STAT signaling pathway in silkworm challenged by B. bassiana were analyzed using quantitative real time PCR. Meanwhile the activation of JAK/STAT signaling pathway by various pathogenic micro-organisms and the affect of JAK/STAT signaling pathway inhibitors on antifungal activity in silkworm hemolymph was also detected. Moreover, RNAi assay of BmCTL5 and the affect on expression levels of signaling factors were also analyzed. We found that JAK/STAT pathway could be obviously activated in silkworm challenged with B. bassiana and had no response to bacteria and B. mori cytoplasmic polyhedrosis virus (BmCPV). However, the temporal expression patterns of JAK/STAT signaling pathway related genes were significantly different. B. mori downstream receptor kinase (BmDRK) might be a positive regulator of JAK/STAT signaling pathway in silkworm against B. bassiana infection. Moreover, antifungal activity assay showed that the suppression of JAK/STAT signaling pathway by inhibitors could significantly inhibit the antifungal activity in hemolymph and resulted in increased sensitivity of silkworm to B. bassiana infection, indicating that JAK/STAT signaling pathway might be involved in the synthesis and secretion of antifungal substances. The results of RNAi assays suggested that BmCTL5 might be one pattern recognition receptors for JAK/STAT signaling pathway in silkworm. These findings yield insights for better understand the molecular mechanisms of JAK/STAT signaling pathway in antifungal immune response in silkworm.


Subject(s)
Beauveria/immunology , Bombyx , Insect Proteins , Janus Kinases , STAT Transcription Factors , Signal Transduction , Animals , Bombyx/genetics , Bombyx/immunology , Bombyx/microbiology , Insect Proteins/genetics , Insect Proteins/immunology , Janus Kinases/genetics , Janus Kinases/immunology , STAT Transcription Factors/genetics , STAT Transcription Factors/immunology , Signal Transduction/genetics , Signal Transduction/immunology
SELECTION OF CITATIONS
SEARCH DETAIL