Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters








Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-38980653

ABSTRACT

Trimethylamine oxide (TMAO) is an intestinal flora metabolite associated with risk of cardiovascular diseases. Transient receptor potential vanilloid 4 (TRPV4) is a Ca2+-permeable ion channel that is essential for vasodilation and endothelial function. Currently, there are few studies on the effect of TMAO on TRPV4 channels. In the present study, Ca2+ imaging of vascular tissue showed that TMAO inhibited TRPV4-mediated Ca2+ influx into aortic endothelial cells in a dose-dependent manner. Furthermore, a whole-cell patch clamp assay showed that TMAO blocked TRPV4-mediated cation currents. Notably, results of aortic vascular tension measurement showed that TMAO impaired endothelium-dependent vasodilation in mouse aortic vessels through the TRPV4-NO pathway. Our results indicated that TMAO inhibited Ca2+ entry in endothelial cells and impaired vasodilation through the TRPV4-NO pathway in mice. These results provide scientific evidence for novel pathogenic mechanisms underlying the role of TMAO in cardiovascular disease.

2.
Front Mol Biosci ; 8: 677661, 2021.
Article in English | MEDLINE | ID: mdl-33981725

ABSTRACT

Transient receptor potential vanilloid 4 (TRPV4) channels are widely expressed in systemic tissues and can be activated by many stimuli. TRPV4, a Ca2+-permeable cation channel, plays an important role in the vasculature and is implicated in the regulation of cardiovascular homeostasis processes such as blood pressure, vascular remodeling, and pulmonary hypertension and edema. Within the vasculature, TRPV4 channels are expressed in smooth muscle cells, endothelial cells, and perivascular nerves. The activation of endothelial TRPV4 contributes to vasodilation involving nitric oxide, prostacyclin, and endothelial-derived hyperpolarizing factor pathways. TRPV4 activation also can directly cause vascular smooth muscle cell hyperpolarization and vasodilation. In addition, TRPV4 activation can evoke constriction in some specific vascular beds or under some pathological conditions. TRPV4 participates in the control of vascular permeability and vascular damage, particularly in the lung capillary endothelial barrier and lung injury. It also participates in vascular remodeling regulation mainly by controlling vasculogenesis and arteriogenesis. This review examines the role of TRPV4 in vascular function, particularly in vascular dilation and constriction, vascular permeability, vascular remodeling, and vascular damage, along with possible mechanisms, and discusses the possibility of targeting TRPV4 for therapy.

SELECTION OF CITATIONS
SEARCH DETAIL