Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 258
Filter
1.
Article in English | MEDLINE | ID: mdl-39383177

ABSTRACT

OBJECTIVES: Childhood disadvantage is associated with lower general cognitive ability (GCA) and brain structural differences in midlife and older adulthood. However, the neuroanatomical mechanisms underlying childhood disadvantage effects on later-life GCA remain poorly understood. Although total surface area (SA) has been linked to lifespan GCA differences, total SA does not capture the non-uniform nature of childhood disadvantage effects on neuroanatomy, which varies across unimodal and transmodal cortices. Here, we examined whether cortical SA profile-the extent to which the spatial patterning of SA deviates from the normative unimodal-transmodal cortical organization-is a mediator of childhood disadvantage effects on later-life GCA. METHOD: In 477 community-dwelling men aged 56-72 years old, childhood disadvantage index (CDI) was derived from four indicators of disadvantages and GCA was assessed using a standardized test. Cortical SA was obtained from structural magnetic resonance imaging. For cortical SA profile, we calculated the spatial similarity between maps of individual cortical SA and MRI-derived principal gradient (i.e., unimodal-transmodal organization). Mediation analyses were conducted to examine the indirect effects of CDI through cortical SA profile on GCA. RESULTS: Around 1.31% of CDI effects on later-life GCA were mediated by cortical SA profile, whereas total SA did not. Higher CDI was associated with more deviation of the cortical SA spatial patterning from the principal gradient, which in turn related to lower later-life GCA. DISCUSSION: Childhood disadvantage may contribute to later-life GCA differences partly by influencing the spatial patterning of cortical SA in a way that deviates from the normative cortical organizational principle.

2.
Commun Biol ; 7(1): 1103, 2024 Sep 09.
Article in English | MEDLINE | ID: mdl-39251807

ABSTRACT

Neurofilament light chain (NfL) levels in circulation have been established as a sensitive biomarker of neuro-axonal damage across a range of neurodegenerative disorders. Elucidation of the genetic architecture of blood NfL levels could provide new insights into molecular mechanisms underlying neurodegenerative disorders. In this meta-analysis of genome-wide association studies (GWAS) of blood NfL levels from eleven cohorts of European ancestry, we identify two genome-wide significant loci at 16p12 (UMOD) and 17q24 (SLC39A11). We observe association of three loci at 1q43 (FMN2), 12q14, and 12q21 with blood NfL levels in the meta-analysis of African-American ancestry. In the trans-ethnic meta-analysis, we identify three additional genome-wide significant loci at 1p32 (FGGY), 6q14 (TBX18), and 4q21. In the post-GWAS analyses, we observe the association of higher NfL polygenic risk score with increased plasma levels of total-tau, Aß-40, Aß-42, and higher incidence of Alzheimer's disease in the Rotterdam Study. Furthermore, Mendelian randomization analysis results suggest that a lower kidney function could cause higher blood NfL levels. This study uncovers multiple genetic loci of blood NfL levels, highlighting the genes related to molecular mechanism of neurodegeneration.


Subject(s)
Genome-Wide Association Study , Neurodegenerative Diseases , Neurofilament Proteins , Humans , Neurofilament Proteins/genetics , Neurofilament Proteins/blood , Neurodegenerative Diseases/genetics , Neurodegenerative Diseases/blood , Genetic Predisposition to Disease , Genetic Loci , Biomarkers/blood , Polymorphism, Single Nucleotide , Male , Female , Alzheimer Disease/genetics , Alzheimer Disease/blood
3.
J Gerontol A Biol Sci Med Sci ; 79(11)2024 Nov 01.
Article in English | MEDLINE | ID: mdl-39169831

ABSTRACT

BACKGROUND: Chronic pain leads to tau accumulation and hippocampal atrophy, which may be moderated through inflammation. In older men, we examined associations of chronic pain with Alzheimer's disease (AD)-related plasma biomarkers and hippocampal volume as moderated by systemic inflammation. METHODS: Participants were men without dementia. Chronic pain was defined as moderate-to-severe pain in 2+ study waves at average ages 56, 62, and 68. At age 68, we measured plasma amyloid-beta (Aß42, n = 871), Aß40 (n = 887), total tau (t-tau, n = 841), and neurofilament light chain (NfL, n = 915), and serum high-sensitivity C-reactive protein (hs-CRP, n = 968), a marker of systemic inflammation. A subgroup underwent structural MRI to measure hippocampal volume (n = 385). Analyses adjusted for medical morbidities, depressive symptoms, and opioid use. RESULTS: Chronic pain was related to higher Aß40 (ß = 0.25, p = .009), but hs-CRP was unrelated to AD-related biomarkers (ps > .05). There was a significant interaction such that older men with both chronic pain and higher levels of hs-CRP had higher levels of Aß42 (ß = 0.36, p = .001) and Aß40 (ß = 0.29, p = .003). Chronic pain and hs-CRP did not interact to predict levels of Aß42/Aß40, t-tau, or NfL. Furthermore, there were significant interactions such that Aß42 and Aß40 were associated with lower hippocampal volume, particularly when levels of hs-CRP were elevated (hs-CRP × Aß42: ß = -0.19, p = .002; hs-CRP × Aß40: ß = -0.21, p = .001), regardless of chronic pain status. CONCLUSIONS: Chronic pain was associated with higher plasma Aß, especially when hs-CRP was also elevated. Higher hs-CRP and Aß levels were both related to smaller hippocampal volumes. Chronic pain, when accompanied by systemic inflammation, may elevate the risk of neurodegeneration in AD-vulnerable regions.


Subject(s)
Amyloid beta-Peptides , Biomarkers , C-Reactive Protein , Chronic Pain , Hippocampus , Magnetic Resonance Imaging , tau Proteins , Humans , Male , Hippocampus/pathology , Hippocampus/diagnostic imaging , C-Reactive Protein/metabolism , C-Reactive Protein/analysis , Aged , Amyloid beta-Peptides/blood , Chronic Pain/blood , Biomarkers/blood , Middle Aged , tau Proteins/blood , Alzheimer Disease/blood , Alzheimer Disease/pathology , Neurofilament Proteins/blood , Organ Size , Peptide Fragments/blood , Inflammation/blood
4.
Article in English | MEDLINE | ID: mdl-39126209

ABSTRACT

Multivariate network-based analytic methods such as weighted gene co-expression network analysis are frequently applied to human and animal gene-expression data to estimate the first principal component of a module, or module eigengene (ME). MEs are interpreted as multivariate summaries of correlated gene-expression patterns and network connectivity across genes within a module. As such, they have the potential to elucidate the mechanisms by which molecular genomic variation contributes to individual differences in complex traits. Although increasingly used to test for associations between modules and complex traits, the genetic and environmental etiology of MEs has not been empirically established. It is unclear if, and to what degree, individual differences in blood-derived MEs reflect random variation versus familial aggregation arising from heritable or shared environmental influences. We used biometrical genetic analyses to estimate the contribution of genetic and environmental influences on MEs derived from blood lymphocytes collected on a sample of N = 661 older male twins from the Vietnam Era Twin Study of Aging (VETSA) whose mean age at assessment was 67.7 years (SD = 2.6 years, range = 62-74 years). Of the 26 detected MEs, 14 (56%) had statistically significant additive genetic variation with an average heritability of 44% (SD = 0.08, range = 35%-64%). Despite the relatively small sample size, this demonstration of significant family aggregation including estimates of heritability in 14 of the 26 MEs suggests that blood-based MEs are reliable and merit further exploration in terms of their associations with complex traits and diseases.

5.
bioRxiv ; 2024 Jul 26.
Article in English | MEDLINE | ID: mdl-39091865

ABSTRACT

INTRODUCTION: The amyloid cascade hypothesis predicts that amyloid-beta (Aß) aggregation drives tau tangle accumulation. We tested competing causal and non-causal hypotheses regarding the direction of causation between Aß40 and Aß42 and total Tau (t-Tau) plasma biomarkers. METHODS: Plasma Aß40, Aß42, t-Tau, and neurofilament light chain (NFL) were measured in 1,035 men (mean = 67.0 years) using Simoa immunoassays. Genetically informative twin modeling tested the direction of causation between Aßs and t-Tau. RESULTS: No clear evidence that Aß40 or Aß42 directly causes changes in t-Tau was observed; the alternative causal hypotheses also fit the data well. In contrast, exploratory analyses suggested a causal impact of the Aß biomarkers on NFL. Separately, reciprocal causation was observed between t-Tau and NFL. DISCUSSION: Plasma Aß40 or Aß42 do not appear to have a direct causal impact on t-Tau. In contrast, Aß aggregation may causally impact NFL in cognitively unimpaired men in their late 60s.

6.
Article in English | MEDLINE | ID: mdl-38878863

ABSTRACT

BACKGROUND: Early identification of Alzheimer's disease (AD) risk is critical for improving treatment success. Cortical thickness is a macrostructural measure used to assess neurodegeneration in AD. However, cortical microstructural changes appear to precede macrostructural atrophy and may improve early risk identification. Currently, whether cortical microstructural changes in aging are linked to vulnerability to AD pathophysiology remains unclear in nonclinical populations, who are precisely the target for early risk identification. METHODS: In 194 adults, we calculated magnetic resonance imaging-derived maps of changes in cortical mean diffusivity (microstructure) and cortical thickness (macrostructure) over 5 to 6 years (mean age: time 1 = 61.82 years; time 2 = 67.48 years). Episodic memory was assessed using 3 well-established tests. We obtained positron emission tomography-derived maps of AD pathology deposition (amyloid-ß, tau) and neurotransmitter receptors (cholinergic, glutamatergic) implicated in AD pathophysiology. Spatial correlational analyses were used to compare pattern similarity among maps. RESULTS: Spatial patterns of cortical macrostructural changes resembled patterns of cortical organization sensitive to age-related processes (r = -0.31, p < .05), whereas microstructural changes resembled the patterns of tau deposition in AD (r = 0.39, p = .038). Individuals with patterns of microstructural changes that more closely resembled stereotypical tau deposition exhibited greater memory decline (ß = 0.22, p = .029). Microstructural changes and AD pathology deposition were enriched in areas with greater densities of cholinergic and glutamatergic receptors (ps < .05). CONCLUSIONS: Patterns of cortical microstructural changes were more AD-like than patterns of macrostructural changes, which appeared to reflect more general aging processes. Microstructural changes may better inform early risk prediction efforts as a sensitive measure of vulnerability to pathological processes prior to overt atrophy and cognitive decline.


Subject(s)
Aging , Alzheimer Disease , Cerebral Cortex , Positron-Emission Tomography , Humans , Alzheimer Disease/pathology , Alzheimer Disease/diagnostic imaging , Alzheimer Disease/physiopathology , Female , Male , Aged , Middle Aged , Aging/pathology , Cerebral Cortex/pathology , Cerebral Cortex/diagnostic imaging , Cerebral Cortex/physiopathology , Magnetic Resonance Imaging , Memory, Episodic
7.
Neurobiol Aging ; 141: 113-120, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38852544

ABSTRACT

We examined how brain reserve in midlife, measured by brain-predicted age difference scores (Brain-PADs), predicted executive function concurrently and longitudinally into early old age, and whether these associations were moderated by young adult cognitive reserve or APOE genotype. 508 men in the Vietnam Era Twin Study of Aging (VETSA) completed neuroimaging assessments at mean age 56 and six executive function tasks at mean ages 56, 62, and 68 years. Results indicated that greater brain reserve at age 56 was associated with better concurrent executive function (r=.10, p=.040) and less decline in executive function over 12 years (r=.34, p=.001). These associations were not moderated by cognitive reserve or APOE genotype. Twin analysis suggested associations with executive function slopes were driven by genetic influences. Our findings suggest that greater brain reserve allowed for better cognitive maintenance from middle- to old age, driven by a genetic association. The results are consistent with differential preservation of executive function based on brain reserve that is independent of young adult cognitive reserve or APOE genotype.


Subject(s)
Aging , Apolipoproteins E , Brain , Cognitive Reserve , Executive Function , Humans , Executive Function/physiology , Cognitive Reserve/physiology , Male , Middle Aged , Brain/diagnostic imaging , Brain/physiology , Aged , Aging/physiology , Aging/genetics , Aging/psychology , Apolipoproteins E/genetics , Genotype , Longitudinal Studies , Cognition/physiology , Neuroimaging
8.
Genome Med ; 16(1): 72, 2024 05 30.
Article in English | MEDLINE | ID: mdl-38811945

ABSTRACT

BACKGROUND: We previously described the KINSSHIP syndrome, an autosomal dominant disorder associated with intellectual disability (ID), mesomelic dysplasia and horseshoe kidney, caused by de novo variants in the degron of AFF3. Mouse knock-ins and overexpression in zebrafish provided evidence for a dominant-negative mode of action, wherein an increased level of AFF3 resulted in pathological effects. METHODS: Evolutionary constraints suggest that other modes-of-inheritance could be at play. We challenged this hypothesis by screening ID cohorts for individuals with predicted-to-be damaging variants in AFF3. We used both animal and cellular models to assess the deleteriousness of the identified variants. RESULTS: We identified an individual with a KINSSHIP-like phenotype carrying a de novo partial duplication of AFF3 further strengthening the hypothesis that an increased level of AFF3 is pathological. We also detected seventeen individuals displaying a milder syndrome with either heterozygous Loss-of-Function (LoF) or biallelic missense variants in AFF3. Consistent with semi-dominance, we discovered three patients with homozygous LoF and one compound heterozygote for a LoF and a missense variant, who presented more severe phenotypes than their heterozygous parents. Matching zebrafish knockdowns exhibit neurological defects that could be rescued by expressing human AFF3 mRNA, confirming their association with the ablation of aff3. Conversely, some of the human AFF3 mRNAs carrying missense variants identified in affected individuals did not rescue these phenotypes. Overexpression of mutated AFF3 mRNAs in zebrafish embryos produced a significant increase of abnormal larvae compared to wild-type overexpression further demonstrating deleteriousness. To further assess the effect of AFF3 variation, we profiled the transcriptome of fibroblasts from affected individuals and engineered isogenic cells harboring + / + , KINSSHIP/KINSSHIP, LoF/ + , LoF/LoF or KINSSHIP/LoF AFF3 genotypes. The expression of more than a third of the AFF3 bound loci is modified in either the KINSSHIP/KINSSHIP or the LoF/LoF lines. While the same pathways are affected, only about one third of the differentially expressed genes are common to the homozygote datasets, indicating that AFF3 LoF and KINSSHIP variants largely modulate transcriptomes differently, e.g. the DNA repair pathway displayed opposite modulation. CONCLUSIONS: Our results and the high pleiotropy shown by variation at this locus suggest that minute changes in AFF3 function are deleterious.


Subject(s)
Intellectual Disability , Transcriptome , Zebrafish , Animals , Female , Humans , Male , Intellectual Disability/genetics , Loss of Function Mutation , Mutation, Missense , Phenotype , Zebrafish/genetics
9.
Alzheimers Res Ther ; 16(1): 90, 2024 04 25.
Article in English | MEDLINE | ID: mdl-38664843

ABSTRACT

BACKGROUND: Plasma neurofilament light chain (NfL) is a promising biomarker of neurodegeneration with potential clinical utility in monitoring the progression of neurodegenerative diseases. However, the cross-sectional associations of plasma NfL with measures of cognition and brain have been inconsistent in community-dwelling populations. METHODS: We examined these associations in a large community-dwelling sample of early old age men (N = 969, mean age = 67.57 years, range = 61-73 years), who are either cognitively unimpaired (CU) or with mild cognitive impairment (MCI). Specifically, we investigated five cognitive domains (executive function, episodic memory, verbal fluency, processing speed, visual-spatial ability), as well as neuroimaging measures of gray and white matter. RESULTS: After adjusting for age, health status, and young adult general cognitive ability, plasma NfL level was only significantly associated with processing speed and white matter hyperintensity (WMH) volume, but not with other cognitive or neuroimaging measures. The association with processing speed was driven by individuals with MCI, as it was not detected in CU individuals. CONCLUSIONS: These results suggest that in early old age men without dementia, plasma NfL does not appear to be sensitive to cross-sectional individual differences in most domains of cognition or neuroimaging measures of gray and white matter. The revealed plasma NfL associations were limited to WMH for all participants and processing speed only within the MCI cohort. Importantly, considering cognitive status in community-based samples will better inform the interpretation of the relationships of plasma NfL with cognition and brain and may help resolve mixed findings in the literature.


Subject(s)
Biomarkers , Cognition , Cognitive Dysfunction , Independent Living , Neurofilament Proteins , Neuroimaging , Neuropsychological Tests , Humans , Male , Neurofilament Proteins/blood , Aged , Middle Aged , Cross-Sectional Studies , Cognitive Dysfunction/blood , Cognitive Dysfunction/diagnostic imaging , Neuroimaging/methods , Cognition/physiology , Biomarkers/blood , Magnetic Resonance Imaging , Brain/diagnostic imaging , White Matter/diagnostic imaging , White Matter/pathology , Aging/blood
10.
Age Ageing ; 53(3)2024 03 01.
Article in English | MEDLINE | ID: mdl-38454901

ABSTRACT

BACKGROUND: The study explores whether frailty at midlife predicts mortality and levels of biomarkers associated with Alzheimer's disease and related dementias (ADRD) and neurodegeneration by early old age. We also examine the heritability of frailty across this age period. METHODS: Participants were 1,286 community-dwelling men from the Vietnam Era Twin Study of Aging at average ages 56, 62 and 68, all without ADRD at baseline. The cumulative deficit frailty index (FI) comprised 37 items assessing multiple physiological systems. Plasma biomarkers at age 68 included beta-amyloid (Aß40, Aß42), total tau (t-tau) and neurofilament light chain (NfL). RESULTS: Being frail doubled the risk of all-cause mortality by age 68 (OR = 2.44). Age 56 FI significantly predicted age 68 NfL (P = 0.014), Aß40 (P = 0.001) and Aß42 (P = 0.023), but not t-tau. Age 62 FI predicted all biomarkers at age 68: NfL (P = 0.023), Aß40 (P = 0.002), Aß42 (P = 0.001) and t-tau (P = 0.001). Age 68 FI scores were associated with age 68 levels of NfL (P = 0.027), Aß40 (P < 0.001), Aß42 (P = 0.001) and t-tau (P = 0.003). Genetic influences accounted for 45-48% of the variance in frailty and significantly contributed to its stability across 11 years. CONCLUSIONS: Frailty during one's 50s doubled the risk of mortality by age 68. A mechanism linking frailty and ADRD may be through its associations with biomarkers related to neurodegeneration. Cumulative deficit frailty increases with age but remains moderately heritable across the age range studied. With environmental factors accounting for about half of its variance, early interventions aimed at reducing frailty may help to reduce risk for ADRD.


Subject(s)
Alzheimer Disease , Frailty , Male , Humans , Aged , Alzheimer Disease/diagnosis , Alzheimer Disease/genetics , Frailty/diagnosis , Amyloid beta-Peptides , Biomarkers
11.
medRxiv ; 2024 Jan 17.
Article in English | MEDLINE | ID: mdl-38293053

ABSTRACT

Background: We previously described the KINSSHIP syndrome, an autosomal dominant disorder associated with intellectual disability (ID), mesomelic dysplasia and horseshoe kidney,caused by de novo variants in the degron of AFF3. Mouse knock-ins and overexpression in zebrafish provided evidence for a dominant-negative (DN) mode-of-action, wherein an increased level of AFF3 resulted in pathological effects. Methods: Evolutionary constraints suggest that other mode-of-inheritance could be at play. We challenged this hypothesis by screening ID cohorts for individuals with predicted-to-be deleterious variants in AFF3. We used both animal and cellular models to assess the deleteriousness of the identified variants. Results: We identified an individual with a KINSSHIP-like phenotype carrying a de novo partial duplication of AFF3 further strengthening the hypothesis that an increased level of AFF3 is pathological. We also detected seventeen individuals displaying a milder syndrome with either heterozygous LoF or biallelic missense variants in AFF3. Consistent with semi-dominance, we discovered three patients with homozygous LoF and one compound heterozygote for a LoF and a missense variant, who presented more severe phenotypes than their heterozygous parents. Matching zebrafish knockdowns exhibit neurological defects that could be rescued by expressing human AFF3 mRNA, confirming their association with the ablation of aff3. Conversely, some of the human AFF3 mRNAs carrying missense variants identified in affected individuals did not complement. Overexpression of mutated AFF3 mRNAs in zebrafish embryos produced a significant increase of abnormal larvae compared to wild-type overexpression further demonstrating deleteriousness. To further assess the effect of AFF3 variation, we profiled the transcriptome of fibroblasts from affected individuals and engineered isogenic cells harboring +/+, DN/DN, LoF/+, LoF/LoF or DN/LoF AFF3 genotypes. The expression of more than a third of the AFF3 bound loci is modified in either the DN/DN or the LoF/LoF lines. While the same pathways are affected, only about one-third of the differentially expressed genes are common to these homozygote datasets, indicating that AFF3 LoF and DN variants largely modulate transcriptomes differently, e.g. the DNA repair pathway displayed opposite modulation. Conclusions: Our results and the high pleiotropy shown by variation at this locus suggest that minute changes in AFF3 function are deleterious.

12.
J Pain ; 25(6): 104463, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38199594

ABSTRACT

Chronic pain leads to tau accumulation and hippocampal atrophy in mice. In this study, we provide one of the first assessments in humans, examining the associations of probable chronic pain with hippocampal volume, integrity of the locus coeruleus (LC)-an upstream site of tau deposition-and Alzheimer's Disease-related plasma biomarkers. Participants were mostly cognitively unimpaired men. Probable chronic pain was defined as moderate-to-severe pain in 2+ study waves at average ages 56, 62, and 68. At age 68, 424 participants underwent structural magnestic resonance imaging (MRI) of hippocampal volume and LC-sensitive MRI providing an index of LC integrity (LC contrast-to-noise ratio). Analyses adjusted for confounders including major health conditions, depressive symptoms, and opioid use. Models showed that men with probable chronic pain had smaller hippocampal volume and lower rostral-middle-but not caudal-LC contrast-to-noise ratio compared to men without probable chronic pain. Men with probable chronic pain also had higher levels of plasma total tau, beta-amyloid-42, and beta-amyloid-40 compared to men without probable chronic pain. These findings suggest that probable chronic pain is associated with tau accumulation and reduced structural brain integrity in regions affected early in the development of Alzheimer's Disease. PERSPECTIVE: Probable chronic pain was associated with plasma biomarkers and brain regions that are affected early in Alzheimer's disease (AD). Reducing pain in midlife and elucidating biological mechanisms may help to reduce the risk of AD in older adults.


Subject(s)
Alzheimer Disease , Amyloid beta-Peptides , Biomarkers , Chronic Pain , Hippocampus , Magnetic Resonance Imaging , tau Proteins , Humans , Male , Aged , Chronic Pain/blood , Chronic Pain/diagnostic imaging , Chronic Pain/pathology , Biomarkers/blood , Alzheimer Disease/blood , Alzheimer Disease/pathology , Alzheimer Disease/diagnostic imaging , Hippocampus/diagnostic imaging , Hippocampus/pathology , Middle Aged , tau Proteins/blood , Amyloid beta-Peptides/blood , Locus Coeruleus/diagnostic imaging , Locus Coeruleus/pathology , Peptide Fragments/blood , Brain/diagnostic imaging , Brain/pathology
13.
Alzheimers Dement ; 20(1): 356-365, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37622539

ABSTRACT

INTRODUCTION: Despite their increased application, the heritability of Alzheimer's disease (AD)-related blood-based biomarkers remains unexplored. METHODS: Plasma amyloid beta 40 (Aß40), Aß42, the Aß42/40 ratio, total tau (t-tau), and neurofilament light (NfL) data came from 1035 men 60 to 73 years of age (µ = 67.0, SD = 2.6). Twin models were used to calculate heritability and the genetic and environmental correlations between them. RESULTS: Additive genetics explained 44% to 52% of Aß42, Aß40, t-tau, and NfL. The Aß42/40 ratio was not heritable. Aß40 and Aß42 were genetically near identical (rg  = 0.94). Both Aß40 and Aß42 were genetically correlated with NfL (rg  = 0.35 to 0.38), but genetically unrelated to t-tau. DISCUSSION: Except for Aß42/40, plasma biomarkers are heritable. Aß40 and Aß42 share mostly the same genetic influences, whereas genetic influences on plasma t-tau and NfL are largely unique in early old-age men. The absence of genetic associations between the Aßs and t-tau is not consistent with the amyloid cascade hypothesis.


Subject(s)
Alzheimer Disease , Male , Humans , Alzheimer Disease/genetics , Amyloid beta-Peptides , tau Proteins/genetics , Biomarkers , Peptide Fragments
14.
Prenat Diagn ; 44(2): 237-246, 2024 02.
Article in English | MEDLINE | ID: mdl-37632214

ABSTRACT

OBJECTIVE: Recurrent deletions involving 17q12 are associated with a variety of clinical phenotypes, including congenital abnormalities of the kidney and urinary tract (CAKUT), maturity onset diabetes of the young, type 5, and neurodevelopmental disorders. Structural and/or functional renal disease is the most common phenotypic feature, although the prenatal renal phenotypes and the postnatal correlates have not been well characterized. METHOD: We reviewed pre- and postnatal medical records of 26 cases with prenatally or postnatally identified 17q12/HNF1B microdeletions (by chromosomal microarray or targeted gene sequencing), obtained through a multicenter collaboration. We specifically evaluated 17 of these cases (65%) with reported prenatal renal ultrasound findings. RESULTS: Heterogeneous prenatal renal phenotypes were noted, most commonly renal cysts (41%, n = 7/17) and echogenic kidneys (41%), although nonspecific dysplasia, enlarged kidneys, hydronephrosis, pelvic kidney with hydroureter, and lower urinary tract obstruction were also reported. Postnatally, most individuals developed renal cysts (73%, 11/15 live births), and there were no cases of end-stage renal disease during childhood or the follow-up period. CONCLUSION: Our findings demonstrate that copy number variant analysis to assess for 17q12 microdeletion should be considered for a variety of prenatally detected renal anomalies. It is important to distinguish 17q12 microdeletion from other etiologies of CAKUT as the prognosis for renal function and presence of associated findings are distinct and may influence pregnancy and postnatal management.


Subject(s)
Kidney Diseases, Cystic , Kidney Diseases , Urogenital Abnormalities , Vesico-Ureteral Reflux , Pregnancy , Female , Humans , Chromosome Deletion , Kidney/diagnostic imaging , Kidney/abnormalities , Kidney Diseases/congenital , Phenotype , Kidney Diseases, Cystic/diagnostic imaging , Kidney Diseases, Cystic/genetics , Hepatocyte Nuclear Factor 1-beta/genetics , Multicenter Studies as Topic
15.
Article in English | MEDLINE | ID: mdl-37096346

ABSTRACT

BACKGROUND: Childhood disadvantage is a prominent risk factor for cognitive and brain aging. Childhood disadvantage is associated with poorer episodic memory in late midlife and functional and structural brain abnormalities in the default mode network (DMN). Although age-related changes in DMN are associated with episodic memory declines in older adults, it remains unclear if childhood disadvantage has an enduring impact on this later-life brain-cognition relationship earlier in the aging process. Here, within the DMN, we examined whether its cortical microstructural integrity-an early marker of structural vulnerability that increases the risk for future cognitive decline and neurodegeneration-is associated with episodic memory in adults at ages 56-66, and whether childhood disadvantage moderates this association. METHODS: Cortical mean diffusivity (MD) obtained from diffusion magnetic resonance imaging was used to measure microstructural integrity in 350 community-dwelling men. We examined both visual and verbal episodic memory in relation to DMN MD and divided participants into disadvantaged and nondisadvantaged groups based on parental education and occupation. RESULTS: Higher DMN MD was associated with poorer visual memory but not verbal memory (ß = -0.11, p = .040 vs ß = -0.04, p = .535). This association was moderated by childhood disadvantage and was significant only in the disadvantaged group (ß = -0.26, p = .002 vs ß = -0.00, p = .957). CONCLUSIONS: Lower DMN cortical microstructural integrity may reflect visual memory vulnerability in cognitively normal adults earlier in the aging process. Individuals who experienced childhood disadvantage manifested greater vulnerability to cortical microstructure-related visual memory dysfunction than their nondisadvantaged counterparts who exhibited resilience in the face of low cortical microstructural integrity.


Subject(s)
Default Mode Network , Memory, Episodic , Male , Humans , Aged , Child , Magnetic Resonance Imaging , Brain , Aging/psychology
16.
Alzheimers Dement ; 19(10): 4357-4366, 2023 10.
Article in English | MEDLINE | ID: mdl-37394941

ABSTRACT

INTRODUCTION: Long-term blood pressure (BP) measures, such as visit-to-visit BP variability (BPV) and cumulative BP, are strong indicators of cardiovascular risks. This study modeled up to 20 years of BP patterns representative of midlife by using BPV and cumulative BP, then examined their associations with development of dementia in later life. METHODS: For 3201 individuals from the Framingham Heart Study, multivariate logistic regression analyses were performed to examine the association between long-term BP patterns during midlife and the development of dementia (ages ≥ 65). RESULTS: After adjusting for covariates, every quartile increase in midlife cumulative BP was associated with a sequential increase in the risk of developing dementia (e.g., highest quartile of cumulative systolic blood pressure had approximately 2.5-fold increased risk of all-cause dementia). BPV was not significantly associated with dementia. DISCUSSION: Findings suggest that cumulative BP over the course of midlife predicts risk of dementia in later life. HIGHLIGHTS Long-term blood pressure (BP) patterns are strong indicators of vascular risks. Cumulative BP and BP variability (BPV) were used to reflect BP patterns across midlife. High cumulative BP in midlife is associated with increased dementia risk. Visit-to-visit BPV was not associated with the onset of dementia.


Subject(s)
Dementia , Hypertension , Humans , Blood Pressure/physiology , Risk Factors , Hypertension/epidemiology , Hypertension/complications , Longitudinal Studies , Dementia/epidemiology , Dementia/complications
17.
Neurobiol Aging ; 129: 185-194, 2023 09.
Article in English | MEDLINE | ID: mdl-37343448

ABSTRACT

Some evidence suggests a biphasic pattern of changes in cortical thickness wherein higher, rather than lower, thickness is associated with very early Alzheimer's disease (AD) pathology. We examined whether integrating information from AD brain signatures based on mean diffusivity (MD) can aid in the interpretation of cortical thickness/volume as a risk factor for future AD-related changes. Participants were 572 men in the Vietnam Era Twin Study of Aging who were cognitively unimpaired at baseline (mean age = 56 years; range = 51-60). Individuals with both high thickness/volume signatures and high MD signatures at baseline had lower cortical thickness/volume in AD signature regions and lower episodic memory performance 12 years later compared to those with high thickness/volume and low MD signatures at baseline. Groups did not differ in level of young adult cognitive reserve. Our findings are in line with a biphasic model in which increased cortical thickness may precede future decline and establish the value of examining cortical MD alongside cortical thickness to identify subgroups with differential risk for poorer brain and cognitive outcomes.


Subject(s)
Alzheimer Disease , Male , Humans , Alzheimer Disease/pathology , Protective Factors , Brain/pathology , Aging/pathology , Risk Factors , Magnetic Resonance Imaging
18.
Am J Med Genet A ; 191(7): 1900-1910, 2023 07.
Article in English | MEDLINE | ID: mdl-37183572

ABSTRACT

Jansen-de Vries syndrome (JdVS) is a neurodevelopmental condition attributed to pathogenic variants in Exons 5 and 6 of PPM1D. As the full phenotypic spectrum and natural history remain to be defined, we describe a large cohort of children and adults with JdVS. This is a retrospective cohort study of 37 individuals from 34 families with disease-causing variants in PPM1D leading to JdVS. Clinical data were provided by treating physicians and/or families. Of the 37 individuals, 27 were male and 10 female, with median age 8.75 years (range 8 months to 62 years). Four families document autosomal dominant transmission, and 32/34 probands were diagnosed via exome sequencing. The facial gestalt, including a broad forehead and broad mouth with a thin and tented upper lip, was most recognizable between 18 and 48 months of age. Common manifestations included global developmental delay (35/36, 97%), hypotonia (25/34, 74%), short stature (14/33, 42%), constipation (22/31, 71%), and cyclic vomiting (6/35, 17%). Distinctive personality traits include a hypersocial affect (21/31, 68%) and moderate-to-severe anxiety (18/28, 64%). In conclusion, JdVS is a clinically recognizable neurodevelopmental syndrome with a characteristic personality and distinctive facial features. The association of pathogenic variants in PPM1D with cyclic vomiting bears not only medical attention but also further pathogenic and mechanistic evaluation.


Subject(s)
Intellectual Disability , Neurodevelopmental Disorders , Adult , Child , Female , Humans , Infant , Male , Developmental Disabilities/diagnosis , Developmental Disabilities/genetics , Intellectual Disability/diagnosis , Intellectual Disability/genetics , Intellectual Disability/pathology , Neurodevelopmental Disorders/diagnosis , Neurodevelopmental Disorders/epidemiology , Neurodevelopmental Disorders/genetics , Phenotype , Protein Phosphatase 2C/genetics , Retrospective Studies , Vomiting , Child, Preschool , Adolescent , Young Adult , Middle Aged
19.
JAMA Psychiatry ; 80(7): 718-727, 2023 07 01.
Article in English | MEDLINE | ID: mdl-37163244

ABSTRACT

Importance: Subjective memory concern has long been considered a state-related indicator of impending cognitive decline or dementia. The possibility that subjective memory concern may itself be a heritable trait is largely ignored, yet such an association would substantially confound its use in clinical or research settings. Objective: To assess the heritability and traitlike dimensions of subjective memory concern and its clinical correlates. Design, Setting, and Participants: This longitudinal twin cohort study was conducted from 1967 to 2019 among male adults with a mean (SD) age of 37.75 (2.52) years to follow-up at mean ages of 56.15 (2.72), 61.50 (2.43), and 67.35 (2.57) years (hereafter, 38, 56, 62, and 67 years, respectively) in the Vietnam Era Twin Study of Aging. The study included a national community-dwelling sample with health, education, and lifestyle characteristics comparable to a general sample of US men in this age cohort. Participants were monozygotic and dizygotic twins randomly recruited from the Vietnam Era Twin Registry. Data were analyzed from May 2021 to December 2022. Main Outcomes and Measures: Measures included subjective memory concern at 4 time points; objective memory, depressive symptoms, and anxiety at the last 3 time points; negative emotionality (trait neuroticism) at age 56 years; polygenic risk scores (PRSs) for neuroticism, depression, and Alzheimer disease; APOE genotype; and parental history of dementia. Primary outcomes were heritability and correlations between subjective memory concern and other measures. Results: The sample included 1555 male adults examined at age 38 years, 520 at age 56 years (due to late introduction of subjective memory concern questions), 1199 at age 62 years, and 1192 at age 67 years. Phenotypically, subjective memory concerns were relatively stable over time. At age 56 years, subjective memory concern had larger correlations with depressive symptoms (r, 0.32; 95% CI, 0.21 to 0.42), anxiety (r, 0.36; 95% CI, 0.18 to 0.51), and neuroticism (r, 0.34; 95% CI, 0.26 to 0.41) than with objective memory (r, -0.24; 95% CI, -0.33 to -0.13). Phenotypic results were similar at ages 62 and 67 years. A best-fitting autoregressive twin model indicated that genetic influences on subjective memory concern accumulated and persisted over time (h2 = 0.26-0.34 from age 38-67 years). At age 56 years, genetic influences for subjective memory concern were moderately correlated with genetic influences for anxiety (r, 0.36; 95% CI, 0.18 to 0.51), negative emotionality (r, 0.51; 95% CI, 0.44-0.57), and depressive symptoms (r, 0.20; 95% CI, 0.10 to 0.29) as well as objective memory (r, -0.22; 95% CI, -0.30 to -0.14). Similar genetic correlations were seen at ages 62 and 67 years. The neuroticism PRS was associated with subjective memory concern at age 38 years (r, 0.10; 95% CI, 0.03. to 0.18) and age 67 years (r, 0.09; 95% CI, 0.01 to 0.16). Subjective memory concern was not associated with any Alzheimer disease risk measures. Conclusions and Relevance: This cohort study found stable genetic influences underlying subjective memory concern dating back to age 38 years. Subjective memory concern had larger correlations with affect-related measures than with memory-related measures. Improving the utility of subjective memory concern as an indicator of impending cognitive decline and dementia may depend on isolating its statelike component from its traitlike component.


Subject(s)
Alzheimer Disease , Humans , Male , Adult , Middle Aged , Aged , Cohort Studies , Twins, Dizygotic/psychology , Longitudinal Studies , Risk Factors , Twins, Monozygotic/psychology
20.
Am J Hum Genet ; 110(5): 790-808, 2023 05 04.
Article in English | MEDLINE | ID: mdl-37071997

ABSTRACT

SRSF1 (also known as ASF/SF2) is a non-small nuclear ribonucleoprotein (non-snRNP) that belongs to the arginine/serine (R/S) domain family. It recognizes and binds to mRNA, regulating both constitutive and alternative splicing. The complete loss of this proto-oncogene in mice is embryonically lethal. Through international data sharing, we identified 17 individuals (10 females and 7 males) with a neurodevelopmental disorder (NDD) with heterozygous germline SRSF1 variants, mostly de novo, including three frameshift variants, three nonsense variants, seven missense variants, and two microdeletions within region 17q22 encompassing SRSF1. Only in one family, the de novo origin could not be established. All individuals featured a recurrent phenotype including developmental delay and intellectual disability (DD/ID), hypotonia, neurobehavioral problems, with variable skeletal (66.7%) and cardiac (46%) anomalies. To investigate the functional consequences of SRSF1 variants, we performed in silico structural modeling, developed an in vivo splicing assay in Drosophila, and carried out episignature analysis in blood-derived DNA from affected individuals. We found that all loss-of-function and 5 out of 7 missense variants were pathogenic, leading to a loss of SRSF1 splicing activity in Drosophila, correlating with a detectable and specific DNA methylation episignature. In addition, our orthogonal in silico, in vivo, and epigenetics analyses enabled the separation of clearly pathogenic missense variants from those with uncertain significance. Overall, these results indicated that haploinsufficiency of SRSF1 is responsible for a syndromic NDD with ID due to a partial loss of SRSF1-mediated splicing activity.


Subject(s)
Intellectual Disability , Neurodevelopmental Disorders , Child , Female , Male , Developmental Disabilities/genetics , Developmental Disabilities/complications , Haploinsufficiency/genetics , Intellectual Disability/pathology , Mutation, Missense/genetics , Neurodevelopmental Disorders/genetics , Phenotype , Humans
SELECTION OF CITATIONS
SEARCH DETAIL