Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters








Database
Publication year range
1.
J Hazard Mater ; 465: 133490, 2024 03 05.
Article in English | MEDLINE | ID: mdl-38228002

ABSTRACT

This study indicated that the application of a novel Fe-Mn modified rice straw biochar (Fe/Mn-RS) as soil amendment facilitated the removal of sulfamonomethoxine (SMM) in soil water microcosms, primarily via activating degradation mechanism rather than adsorption. The similar enhancement on SMM removal did not occur using rice straw biochar (RS). Comparison of Fe/Mn-RS with RS showed that Fe/Mn-RS gains new physic-chemical properties such as abundant oxygenated C-centered persistent free radicals (PFRs). In the Fe/Mn-RS microcosms, the degradation contributed 79.5-83.8% of the total SMM removal, which was 1.28-1.70 times higher than that in the RS microcosms. Incubation experiments using sterilized and non-sterilized microcosms further revealed that Fe/Mn-RS triggered both the biodegradation and abiotic degradation of SMM. For abiotic degradation of SMM, the abundant •OH generation, induced by Fe/Mn-RS, was demonstrated to be the major contributor, according to EPR spectroscopy and free radical quenching experiments. Fenton-like bio-reaction occurred in this process where Fe (Ⅲ), Mn (Ⅲ) and Mn (Ⅳ) gained electrons, resulting in oxidative hydroxylation of SMM. This work provides new insights into the impacts of biochar on the fates of antibiotics in soil water and a potential solution for preventing antibiotic residues in agricultural soil becoming a non-point source pollutant.


Subject(s)
Oryza , Sulfamonomethoxine , Water , Soil/chemistry , Hydroxyl Radical , Charcoal/chemistry , Oryza/chemistry , Free Radicals
2.
Ying Yong Sheng Tai Xue Bao ; 33(4): 1027-1036, 2022 Apr.
Article in Chinese | MEDLINE | ID: mdl-35543056

ABSTRACT

We examined the effects of biochar and urease inhibitors/nitrification inhibitors on nitrification process, ammonia and N2O emission in subtropical soil, and determined the best combination of biochar with nitrification and urease inhibitors. This work could provide a theoretical basis for the mitigation of the negative environmental risk caused by reactive nitrogen gas in the application of nitrogen fertilizer. A indoor aerobic culture test was conducted with seven treatments [urea+biochar (NB), urea+nitrification inhibitor (N+NI), urea+urease inhibitor (N+UI), urea+nitrification inhibitor+urease inhibitor (N+NIUI), urea+nitrification inhibitor+biochar (NB+NI), urea+urease inhibitor+biochar (NB+UI), urea+nitrification inhibitor+urease inhibitor+biochar (NB+NIUI)] and urea (N) as the control. The dynamics of soil inorganic nitrogen content, N2O emission and the volatility of ammonia volatilization were observed under combined application of biochar with urease inhibitor (NBPT)/nitrification inhibitor (DMPP). The results showed that:1)Compared to the control (5.11 mg N·kg-1·d-1) during the incubation period, NB treatment significantly increased therate constant of nitrification by 33.9%, and N+NI treatment significantly reduced the nitrification rate constant by 22.9%. NB treatment significantly increased the abundance of ammonia oxidizing bacteria (AOB) by 56.0%. 2) Compared with N treatment, N+NI and NB+NI treatments signi-ficantly enhanced the cumulative emission of NH3 by 49%. The N+UI treatment reduced the cumulative loss of NH3. The inhibition effect of NB+UI treatment was more significant. 3) The emission rate of N2O was highest in the first 10 days after fertilization. The N2O emission under NB treatment was the earliest, and that of N treatment was the highest (5.87 µg·kg-1·h-1). The combined application of DMPP and NBPT performed the best in reducing soil N2O emission. We estimated global warming potential (GWP) of the direct N2O and indirect N2O (NH3) emissions. Compared with N treatments, N+NI and NB+NI treatments increased the GWP by 34.8% and 40.9%, respectively. While the NB and NB+UI treatments significantly reduced the GWP by 45.9% and 60.5%, the combination of biochar and urease inhibitor had the best effect on reduction of GWP of soil active nitrogen emissions.


Subject(s)
Nitrification , Soil , Agriculture/methods , Ammonia/analysis , Charcoal , Dimethylphenylpiperazinium Iodide/pharmacology , Fertilizers/analysis , Nitrogen/analysis , Nitrous Oxide/analysis , Urea , Urease
3.
3 Biotech ; 12(5): 106, 2022 May.
Article in English | MEDLINE | ID: mdl-35462950

ABSTRACT

Soil microbial communities are critical to plant health and productivity. Crop-associated microbial diversity may exhibit spatial specificity across regions and soil compartments. However, we lack sound evidence for the impact of variation in soil microbial diversity on plant productivity caused by regional differences. The main aims of this study are to explore the structure and functionality of the belowground (potato tuber surface and rhizosphere) microbial communities in three compartments and assess whether these communities contribute to potato productivity. Significant differences in alpha and beta diversities of belowground microbiota were detected in different compartments and regions, mainly due to differences in available soil nutrients and pH. Changes to microbial diversity between bulk soil and rhizosphere or tuber surface soil were significantly negatively correlated with potato yield and nutrient content and positively correlated with starch content. We further found some bacterial (Mucilaginibacter, Dokdonella, and Salinispora) and fungal (Solicoccozyma, Scytalidium, and Humicola) genera closely associated with potato yield and quality. Aggregated boosted tree prediction revealed that soil physicochemical properties and microbial diversity of tuber surface soil contributed more to potato yield; tuber surface soil bacterial contributed more to potato starch and nutrient content. Our findings provide experimental evidence that the significant differences in soil microbial diversity and specific microbial taxa enrichment may potentially influence crop productivity under soil physicochemical property change scenarios in the agricultural ecosystem. Supplementary Information: The online version contains supplementary material available at 10.1007/s13205-022-03167-6.

4.
Sci Total Environ ; 821: 153344, 2022 May 15.
Article in English | MEDLINE | ID: mdl-35085626

ABSTRACT

Rice-wheat cropping system (RWCS), the major rice-based cropping system, constitutes a significant source of N-related greenhouse gas (GHG) emission due to the unique wet-dry alternation process. Biochar is often highlighted as a potential solution for reducing fertilizer N losses, hence, understanding its effects on Ngr emissions (mainly NH3 and N2O) under wet-dry conditions is critical to inform strategies for GHG mitigation. This study investigated the responses of NH3 and N2O emissions to biochar amendments during rice and wheat seasons based on in situ measurements under ten-year successive straw biochar application in RWCS. Our results indicated that 43.7% and 89.9% of N2O and NH3 emissions were emitted during rice season and 56.3% and 10.1% during wheat season, respectively. Long-term biochar amendment was found to play significant role in mitigating NH3 emissions (38.6-43.9%), which could be attributed to the disappearance of liming effect of aged-biochar on flooding water and decreased NH4+ concentrations in the soil. However, considerable variation of N2O emissions were observed in RWCS. Biochar showed a significant decreasing effect on the net global warming potential related to N2O and NH3 emissions (GWPN) in rice season (16.1-89.6%), and slight increased tendency in wheat season (1.43-13.1%) primarily due to its positive effects on N2O emission. Biochar amendment mainly BC22.5, significantly increased above-ground yields by 9.22% in rice season. Thus, it is a low carbon-producing and sustainable crop management method that can support crop production, C sequestration, and GHG mitigation in rice season under RWCS from the viewpoint of the Ngr mitigation. Our results suggest that emission patterns of N2O and NH3 varied with wet-dry alternation under the disturbance of long-term biochar amendment in RWCS; moreover, long-term biochar application exhibited significant potential for mitigating soil Ngr losses in rice season for RWCS.


Subject(s)
Oryza , Agriculture/methods , Charcoal , China , Global Warming , Nitrous Oxide/analysis , Seasons , Soil , Triticum
5.
Ying Yong Sheng Tai Xue Bao ; 31(12): 4312-4320, 2020 Dec.
Article in Chinese | MEDLINE | ID: mdl-33393271

ABSTRACT

Reducing soil ammonia volatilization is one of the key ways to reduce soil nitrogen loss and improve nitrogen utilization efficiency in farmlands. Biochar has unique physico-chemical pro-perties, which can change soil physical and chemical properties, affect soil nitrogen cycle, and affect ammonia volatilization in farmland soil. Firstly, we reviewed the ammonia volatilization process and its influencing factors (climatic condition, soil environment, and fertilization management, etc.) in paddy fields and upland fields. Then, research progress on the impacts of biochar on ammonia volatilization from farmland ecosystem was reviewed. Furthermore, the mechanisms underlying the responses of ammonia volatilization to biochar intervention were discussed from the aspects of physical adsorption, gas-liquid equilibrium, and biochemical progress regulation. The reduction of soil ammonia volatilization is mainly based on the adsorption of soil NH4+ and NH3 by oxygen-containing functional groups on the surface of biochar and the promotion of soil nitrification. How-ever, the increases of soil ammonia volatilization are mainly related to the increases of soil pH, air permeability, activities of microorganisms related with soil organic nitrogen mineralization. Finally, the research direction of reducing soil ammonia volatilization and improving nitrogen utilization efficiency by biochar was prospected.


Subject(s)
Oryza , Soil , Ammonia/analysis , Charcoal , Ecosystem , Farms , Fertilizers/analysis , Nitrogen/analysis , Volatilization
6.
Ying Yong Sheng Tai Xue Bao ; 26(1): 304-10, 2015 Jan.
Article in Chinese | MEDLINE | ID: mdl-25985683

ABSTRACT

Controlling soil nutrient leaching in farmland ecosystems has been a hotspot in the research field of agricultural environment. Biochar has its unique physical and chemical properties, playing a significant role in enhancing soil carbon storage, improving soil quality and increasing crop yield. As a kind of new exogenous material, biochar has the potential in impacting soil nutrient cycling directly or indirectly, and has profound influences on soil nutrient leaching. This paper analyzed the intrinsic factors affecting how biochar affects soil nutrient leaching, such as the physical and chemical properties of biochar, and the interaction between biochar and soil organisms. Then the latest literatures regarding the external factors, including biochar application rates, soil types, depth of soil layer, fertilization conditions and temporal dynamics, through which biochar influences soil nutrient (especially nitrogen and phosphorus) leaching were reviewed. On that basis, four related action mechanisms were clarified, including direct adsorption of nutrients by biochar due to its micropore structure or surface charge, influencing nutrient leaching through increasing soil water- holding capacity, influencing nutrient cycling through the interaction with soil microbes, and preferential transport of absorbed nutrients by fine biochar particles. At last future research directions for better understanding the interactions between biochar and nutrient leaching in the soil were proposed.


Subject(s)
Agriculture , Charcoal , Soil/chemistry , Adsorption , Carbon/analysis , Nitrogen/analysis , Phosphorus/analysis , Soil Microbiology , Water
SELECTION OF CITATIONS
SEARCH DETAIL