Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.682
Filter
1.
Water Environ Res ; 96(6): e11056, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38825347

ABSTRACT

Nitrate poses a potential threat to aquatic ecosystems. This study focuses on the sulfur autotrophic denitrification mechanism in the process of water culture wastewater treatment, which has been successfully applied to the degradation of nitrogen in water culture farm effluents. However, the coexistence of organic acids in the treatment process is a common environmental challenge, significantly affecting the activity of denitrifying bacteria. This paper aims to explore the effects of adding benzoic acid and lactic acid on denitrification performance, organic acid removal rate, and microbial population abundance in sulfur autotrophic denitrification systems under optimal operating conditions, sulfur deficiency, and high hydraulic load. In experiments with 50 mg·L-1 of benzoic acid or lactic acid alone, the results show that benzoic acid and lactic acid have a stimulating effect on denitrification activity, with the stimulating effect significantly greater than the inhibitory effect. Under optimal operating conditions, the average denitrification rate of the system remained above 99%; under S/N = 1.5 conditions, the average denitrification rate increased from 88.34% to 91.93% and 85.91%; under HRT = 6 h conditions, the average denitrification rate increased from 75.25% to 97.79% and 96.58%. In addition, the addition of organic acids led to a decrease in microbial population abundance. At the phylum level, Proteobacteria has always been the dominant bacterial genus, and its relative abundance significantly increased after the addition of benzoic acid, from 40.2% to 61.5% and 62.4%. At the genus level, Thiobacillus, Sulfurimonas, Chryseobacterium, and Thermomonas maintained high population abundances under different conditions. PRACTITIONER POINTS: Employing autotrophic denitrification process for treating high-nitrate wastewater. Utilizing organic acids as external carbon sources. Denitrifying bacteria demonstrate high utilization efficiency towards organic acids. Organic acids promote denitrification more than they inhibit it. The promotion is manifested in the enhancement of activity and microbial abundance.


Subject(s)
Autotrophic Processes , Benzoic Acid , Denitrification , Lactic Acid , Sulfur , Benzoic Acid/metabolism , Sulfur/metabolism , Lactic Acid/metabolism , Bacteria/metabolism , Bacteria/classification , Microbiota/drug effects , Waste Disposal, Fluid/methods , Water Purification/methods
2.
Sci Bull (Beijing) ; 2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38729801

ABSTRACT

Two-dimensional (2D) ordered carbon-nitrogen binary compounds (CxNy) show great potential in many fields owing to their diverse structures and outstanding properties. However, the scalable and selective synthesis of 2D CxNy compounds remain a challenge due to the variable C/N stoichiometry induced coexistence of graphitic, pyridinic, and pyrrolic N species and the competitive growth of graphene. Here, this work systematically explored the mechanism of selective growth of a series of 2D ordered CxNy compounds, namely, the g-C3N4, C2N, C3N, and C5N, on various epitaxial substrates via first-principles calculations. By establishing the thermodynamic phase diagram, it is revealed that the individualized surface interaction and symmetry match between 2D CxNy compounds and substrates together enable the selective epitaxial growth of single crystal 2D CxNy compounds within distinct chemical potential windows of feedstock. The kinetics behaviors of the diffusion and attachment of the decomposed feedstock C/N atoms to the growing CxNy clusters further confirmed the feasibility of the substrate mediated selective growth of 2D CxNy compounds. Moreover, the optimal experimental conditions, including the temperature and partial pressure of feedstock, are suggested for the selective growth of targeted 2D CxNy compound on individual epitaxial substrates by carefully considering the chemical potential of carbon/nitrogen as the functional of experimental parameters based on the standard thermochemical tables. This work provides an insightful understanding on the mechanism of selective epitaxial growth of 2D ordered CxNy compounds for guiding the future experimental design.

3.
Cells ; 13(9)2024 May 02.
Article in English | MEDLINE | ID: mdl-38727314

ABSTRACT

During the secretory phase of the menstrual cycle, endometrial fibroblast cells begin to change into large epithelial-like cells called decidual cells in a process called decidualization. This differentiation continues more broadly in the endometrium and forms the decidual tissue during early pregnancy. The cells undergoing decidualization as well as the resulting decidual cells, support successful implantation and placentation during early pregnancy. This study was carried out to identify new potentially important long non-coding RNA (lncRNA) genes that may play a role in human endometrial stromal fibroblast cells (hESF) undergoing decidualization in vitro, and several were found. The expression of nine was further characterized. One of these, AC027288.3, showed a dramatic increase in the expression of hESF cells undergoing decidualization. When AC027288.3 expression was targeted, the ability of the cells to undergo decidualization as determined by the expression of decidualization marker protein-coding genes was significantly altered. The most affected markers of decidualization whose expression was significantly reduced were FOXO1, FZD4, and INHBA. Therefore, AC027288.3 may be a major upstream regulator of the WNT-FOXO1 pathway and activin-SMAD3 pathways previously shown as critical for hESF decidualization. Finally, we explored possible regulators of AC027288.3 expression during human ESF decidualization. Expression was regulated by cAMP and progesterone. Our results suggest that AC027288.3 plays a role in hESF decidualization and identifies several other lncRNA genes that may also play a role.


Subject(s)
Decidua , Endometrium , Fibroblasts , RNA, Long Noncoding , Stromal Cells , Humans , Female , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Fibroblasts/metabolism , Fibroblasts/cytology , Decidua/metabolism , Decidua/cytology , Endometrium/cytology , Endometrium/metabolism , Stromal Cells/metabolism , Stromal Cells/cytology , Forkhead Box Protein O1/metabolism , Forkhead Box Protein O1/genetics , Pregnancy , Adult , Cell Differentiation/genetics
4.
Infect Agent Cancer ; 19(1): 21, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38693556

ABSTRACT

AIMS: This study compared the prevalences of metabolic syndrome and of cardiac or kidney comorbidities among patients with hepatocellular carcinoma (HCC) associated with metabolic dysfunction-related fatty liver disease (MAFLD), chronic infection with hepatitis B or C virus (HBV or HCV), or the combination of MAFLD and chronic HBV infection. METHODS: Medical records were retrospectively analyzed for patients with HCC who underwent hepatectomy between March 2013 and March 2023. Patients with HCC of different etiologies were compared in terms of their clinicodemographic characteristics and laboratory data before surgery. RESULTS: Of the 2422 patients, 1,822 (75.2%) were chronically infected with HBV without MAFLD and HCV, 415 (17.2%) had concurrent MAFLD and chronic HBV infection but no HCV infection, 121 (5.0%) had MAFLD without hepatitis virus infection, and 64 (2.6%) were chronically infected with HCV in the presence or absence of MAFLD and HBV infection. Compared to patients chronically infected with HBV without MAFLD and HCV, those with MAFLD but no hepatitis virus infection showed significantly lower prevalence of cirrhosis, ascites, portal hypertension, alpha-fetoprotein concentration ≥ 400 ng/mL, tumor size > 5 cm, multinodular tumors and microvascular invasion. Conversely, they showed significantly higher prevalence of metabolic syndrome, hypertension, type 2 diabetes, abdominal obesity, history of cardiovascular disease, T-wave alterations, hypertriglyceridemia and hyperuricemia, as well as higher risk of arteriosclerotic cardiovascular disease. Compared to patients with MAFLD but no hepatitis virus infection, those with concurrent MAFLD and chronic infection with HBV showed significantly higher prevalence of cirrhosis, ascites and portal hypertension, but significantly lower prevalence of hypertension and history of cardiovascular disease. Compared to patients with other etiologies, those chronically infected with HCV in the presence or absence of MAFLD and HBV infection, showed significantly higher prevalence of cirrhosis, portal hypertension, ascites, and esophagogastric varices. CONCLUSION: Patients with HCC associated with MAFLD tend to have a background of less severe liver disease than those with HCC of other etiologies, but they may be more likely to suffer metabolic syndrome or comorbidities affecting the heart or kidneys.

5.
Front Plant Sci ; 15: 1372580, 2024.
Article in English | MEDLINE | ID: mdl-38736444

ABSTRACT

The Homeodomain-Leucine Zipper (HD-ZIP) transcription factors play a pivotal role in governing various aspects of plant growth, development, and responses to abiotic stress. Despite the well-established importance of HD-ZIPs in many plants, their functions in Acoraceae, the basal lineage of monocots, remain largely unexplored. Using recently published whole-genome data, we identified 137 putative HD-ZIPs in two Acoraceae species, Acorus gramineus and Acorus calamus. These HD-ZIP genes were further classified into four subfamilies (I, II, III, IV) based on phylogenetic and conserved motif analyses, showcasing notable variations in exon-intron patterns among different subfamilies. Two microRNAs, miR165/166, were found to specifically target HD-ZIP III genes with highly conserved binding sites. Most cis-acting elements identified in the promoter regions of Acoraceae HD-ZIPs are involved in modulating light and phytohormone responsiveness. Furthermore, our study revealed an independent duplication event in Ac. calamus and a one-to-multiple correspondence between HD-ZIP genes of Ac. calamus and Ac. gramineus. Expression profiles obtained from qRT-PCR demonstrated that HD-ZIP I genes are strongly induced by salinity stress, while HD-ZIP II members have contrasting stress responses in two species. HD-ZIP III and IV genes show greater sensitivity in stress-bearing roots. Taken together, these findings contribute valuable insights into the roles of HD-ZIP genes in stress adaptation and plant resilience in basal monocots, illuminating their multifaceted roles in plant growth, development, and response to abiotic stress.

6.
Rev Sci Instrum ; 95(5)2024 May 01.
Article in English | MEDLINE | ID: mdl-38739426

ABSTRACT

With the development of microfluidic technology, microfluidic chips have played a positive role in applications such as cell culture, microfluidic PCR, and nanopore gene sequencing. However, the presence of bubbles interferes with fluid flow and has a significant impact on experimental results. There are many reasons for the generation of bubbles in microfluidic chips, such as pressure changes inside the chip, air vibration inside the chip, and the open chip guiding air into the chip when driving fluid. This study designed and prepared a microfluidic device based on polydimethylsiloxane. First, air was actively introduced into the microfluidic chip, and bubbles were captured through the microfluidic device to simulate the presence of bubbles inside the chip in biological experiments. To remove bubbles trapped in the microfluidic chip, distilled water, distilled water containing surfactants, and mineral oil were pumped into the microfluidic chip. We compared and discussed the bubble removal efficiency under different driving fluids, driving pressures, and open/closed channel configurations. This study helps to understand the mechanism of bubble formation and removal in microfluidic devices, optimize chip structure design and experimental reagent selection, prevent or eliminate bubbles, and reduce the impact of bubbles on experiments.

7.
Integr Comp Biol ; 2024 May 16.
Article in English | MEDLINE | ID: mdl-38755000

ABSTRACT

Predicting performance responses of insects to climate change is crucial for biodiversity conservation and pest management. While most projections on insects' performance under climate change have used macro-scale weather station data, few incorporated the microclimates within vegetation that insects inhabit and their feeding behaviors (e.g., leaf-nesting: building leaf nests or feeding inside). Here, taking advantage of relatively homogenous vegetation structures in agricultural fields, we built microclimate models to examine fine-scale air temperatures within two important crop systems (maize and rice) and compared microclimate air temperatures to temperatures from weather stations. We deployed physical models of caterpillars and quantified effects of leaf-nesting behavior on operative temperatures of two Lepidoptera pests: Ostrinia furnacalis (Pyralidae) and Cnaphalocrocis medinalis (Crambidae). We built temperature-growth rate curves and predicted the growth rate of caterpillars with and without leaf-nesting behavior based on downscaled microclimate changes under different climate change scenarios. We identified widespread differences between microclimates in our crop systems and air temperatures reported by local weather stations. Leaf-nesting individuals in general had much lower body temperatures compared to non-leaf-nesting individuals. When considering microclimates, we predicted leaf-nesting individuals grow slower compared to non-leaf nesting individuals with rising temperature. Our findings highlight the importance of considering microclimate and habitat-modifying behavior in predicting performance responses to climate change. Understanding the thermal biology of pests and other insects would allow us to make more accurate projections on crop yields and biodiversity responses to environmental changes.

8.
J Clin Transl Hepatol ; 12(5): 525-533, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38779519

ABSTRACT

Most patients with hepatocellular carcinoma (HCC) have a poor prognosis. Hepatectomy and local ablation are the main curative treatments for HCC. Nevertheless, the recurrence rate after hepatectomy or ablation is up to 70%, which seriously affects patient prognosis. Several adjuvant therapies have been explored to reduce postoperative recurrence. However, although a variety of adjuvant therapies have been shown to reduce the recurrence rate and improve overall survival, a standard consensus of national HCC guidelines for adjuvant treatment is lacking. Therefore, there are significant differences in the recommendations for adjuvant therapy for HCC between the Eastern and Western guidelines. A variety of adjuvant treatment methods, such as antiviral therapy, transarterial chemoembolization or traditional Chinese medicine, are recommended by the Chinese HCC guidelines. However, Western guidelines make few recommendations other than antiviral therapy. Adjuvant immune checkpoint inhibitors are recommended only in the recently updated American Association for the Study of Liver Diseases guidelines. This review summarized the existing adjuvant therapy options after curative hepatectomy or ablation and discusses several important dilemmas of adjuvant treatments.

9.
Angew Chem Int Ed Engl ; : e202407214, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38777942

ABSTRACT

We report an anomalous structural transformation of a Cu(I) cluster into two different types of copper-silver (CuAg) alloy nanoclusters. Different from previous reports, we demonstrate that under specifically designed reaction conditions, the Ag-doping could induce a substantial growth of the starting Cu15 and a Ag13Cu20 nanocluster was obtained via the unexpected insertion of an Ag13 kernel inside the Cu(I)-S shell. Ag13Cu20 demonstrates high activity to initiate the photopolymerization of previously hard-to-print inorganic polymers in 3D laser microprinting. Interestingly, a slight modification of the reaction condition leads to the formation of another Ag18-xCuxS (8≤x) nanocluster templated by a central S2- anion, which possesses a unique electronic structure compared to conventional template-free CuAg nanoclusters. Overall, this work unveils the intriguing doping chemistry of Cu clusters, as well as their capability to create different types of alloy nanoclusters with previously unobtainable structures and multifunctionality.

10.
J Fungi (Basel) ; 10(5)2024 May 15.
Article in English | MEDLINE | ID: mdl-38786710

ABSTRACT

Despite its ubiquitous infectivity to mammals with strong host specificity, our current knowledge about Pneumocystis has originated from studies of merely 4% of extant mammalian species. Further studies of Pneumocystis epidemiology across a broader range of animal species require the use of assays with high sensitivity and specificity. To this end, we have developed multiple universal Pneumocystis primers targeting different genetic loci with high amplification efficiency. Application of these primers to PCR investigation of Pneumocystis in free-living hares (Lepus townsendii, n = 130) and rabbits (Oryctolagus cuniculus, n = 8) in Canada revealed a prevalence of 81% (105/130) and 25% (2/8), respectively. Genotyping analysis identified five and two variants of Pneumocystis from hares and rabbits, respectively, with significant sequence divergence between the variants from hares. Based on phylogenetic analysis using nearly full-length sequences of the mitochondrial genome, nuclear rRNA operon and dihydropteroate synthase gene for the two most common variants, Pneumocystis in hares and rabbits are more closely related to each other than either are to Pneumocystis in other mammals. Furthermore, Pneumocystis in both hares and rabbits are more closely related to Pneumocystis in primates and dogs than to Pneumocystis in rodents. The high prevalence of Pneumocystis in hares (P. sp. 'townsendii') suggests its widespread transmissibility in the natural environment, similar to P. oryctolagi in rabbits. The presence of multiple distinct Pneumocystis populations in hares contrasts with the lack of apparent intra-species heterogeneity in P. oryctolagi, implying a unique evolution history of P. sp. 'townsendii' in hares.

11.
Article in English | MEDLINE | ID: mdl-38815211

ABSTRACT

Resin-bonded restorations are the most important caries treatment method in clinical practice. Thus, improving the durability of dentin bonding remains a pressing issue. As a promising solution, guided tissue remineralization can induce the formation of apatite nanocrystals to repair defects in the dentin bonding interface. In this study, we present an experimental 20 wt % citric acid (CA) dental etching agent that removes the smear layer. After CA-etching, approximately 3.55 wt % residual CA formed a strong bond with collagen fibrils, reducing the interfacial energy between the remineralizing solution and dentin. CA helped achieve almost complete intrafibrillar and extrafibrillar mineralization after 24 h of mineralization. CA also significantly promoted poly(amidoamine)-induced dentin biomimetic mineralization. The elastic modulus and microhardness of remineralized dentin were restored to that of sound dentin. The remineralized interface reduced microleakage and provided a stronger, longer-lasting bond than conventional phosphate acid-etching. The newly developed CA dental etching agents promoted rapid dentin biomimetic mineralization and improved bonding efficacy through interfacial control, representing a new approach with clinical practice implications.

12.
Bioact Mater ; 39: 163-190, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38808156

ABSTRACT

Oral administration is the most simple, noninvasive, convenient treatment. With the increasing demands on the targeted drug delivery, the traditional oral treatment now is facing some challenges: 1) biologics how to implement the oral treatment and ensure the bioavailability is not lower than the subcutaneous injections; 2) How to achieve targeted therapy of some drugs in the gastrointestinal tract? Based on these two issues, drug delivery microrobots have shown great application prospect in oral drug delivery due to their characteristics of flexible locomotion or driven ability. Therefore, this paper summarizes various drug delivery microrobots developed in recent years and divides them into four categories according to different driving modes: magnetic-controlled drug delivery microrobots, anchored drug delivery microrobots, self-propelled drug delivery microrobots and biohybrid drug delivery microrobots. As oral drug delivery microrobots involve disciplines such as materials science, mechanical engineering, medicine, and control systems, this paper begins by introducing the gastrointestinal barriers that oral drug delivery must overcome. Subsequently, it provides an overview of typical materials involved in the design process of oral drug delivery microrobots. To enhance readers' understanding of the working principles and design process of oral drug delivery microrobots, we present a guideline for designing such microrobots. Furthermore, the current development status of various types of oral drug delivery microrobots is reviewed, summarizing their respective advantages and limitations. Finally, considering the significant concerns regarding safety and clinical translation, we discuss the challenges and prospections of clinical translation for various oral drug delivery microrobots presented in this paper, providing corresponding suggestions for addressing some existing challenges.

13.
Genes (Basel) ; 15(5)2024 May 11.
Article in English | MEDLINE | ID: mdl-38790240

ABSTRACT

Barley (Hordeum vulgare L.), a diverse cereal crop, exhibits remarkable versatility in its applications, ranging from food and fodder to industrial uses. The content of cellulose in barley is significantly influenced by the COBRA genes, which encode the plant glycosylphosphatidylinositol (GPI)-anchored protein (GAP) that plays a pivotal role in the deposition of cellulose within the cell wall. The COBL (COBRA-Like) gene family has been discovered across numerous species, yet the specific members of this family in barley remain undetermined. In this study, we discovered 13 COBL genes within the barley genome using bioinformatics methods, subcellular localization, and protein structure analysis, finding that most of the barley COBL proteins have a signal peptide structure and are localized on the plasma membrane. Simultaneously, we constructed a phylogenetic tree and undertook a comprehensive analysis of the evolutionary relationships. Other characteristics of HvCOBL family members, including intraspecific collinearity, gene structure, conserved motifs, and cis-acting elements, were thoroughly characterized in detail. The assessment of HvCOBL gene expression in barley under various hormone treatments was conducted through qRT-PCR analysis, revealing jasmonic acid (JA) as the predominant hormonal regulator of HvCOBL gene expression. In summary, this study comprehensively identified and analyzed the barley COBL gene family, aiming to provide basic information for exploring the members of the HvCOBL gene family and to propose directions for further research.


Subject(s)
Gene Expression Regulation, Plant , Hordeum , Multigene Family , Phylogeny , Plant Growth Regulators , Plant Proteins , Hordeum/genetics , Hordeum/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Plant Growth Regulators/metabolism , Plant Growth Regulators/genetics , Genome, Plant , Oxylipins/metabolism , Cyclopentanes/metabolism
14.
Sci Rep ; 14(1): 10698, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38730235

ABSTRACT

Janus group-III chalcogenide monolayers and based heterostructures with breaking vertical structural symmetry offer additional prospects in the upcoming high-performance photoelectric devices. We studied the geometrical, electronic, and photoelectric properties of Janus group-III chalcogenide monolayers and heterostructures. The most energy favorable stacking design of ten vertical heterostructures are considered. The results showed that the Janus Se-In-Ga-S and S-In-Ga-Se monolayers exhibit semiconducting characteristics with the band gaps of 1.295 eV and 1.752 eV, respectively. Furthermore, the different stacking configurations and surface termination at interface can realize the transition of band alignment between type I and type II due to the interlayer coupling. Moreover, we systematically investigated the photoelectric properties of Janus group-III chalcogenide heterostructures and predicated an optimized power conversion efficiency of 16.2%. These findings can aid in comprehending the customized characteristics of Janus group-III chalcogenide heterostructures, offering theoretical guidance for creating innovative photoelectric devices.

15.
Langmuir ; 40(20): 10663-10675, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38718299

ABSTRACT

Electrocatalytic reduction (ECR) of CO2 to chemical products is an important carbon emission reduction method. This work uses DFT to study the stability of N-doped graphene-supported four metal single-atom catalysts (M-N-C) and the effects of the coordination environment and metal centers on the selectivity of CO2 ECR to C1 products. The results show that Fe, Co, Ni, and Cu have good stability. The coordination environment has a significant modulating effect on product selectivity, and the change of the number of ligand nitrogen atoms will affect the size of the potential-limiting step of each product. When the number of nitrogen ligands is the same, the different metal centers of the M-N-C catalyst have a significant effect on the selectivity of different products. In addition, the introduction of nitrogen atom ligands can adjust the electronic structure of the graphene-supported metal center, increase the d-band center of most metals, and improve the reaction activity.

16.
J Am Chem Soc ; 146(20): 13797-13804, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38722223

ABSTRACT

Hydrides are promising candidates for achieving room-temperature superconductivity, but a formidable challenge remains in reducing the stabilization pressure below a megabar. In this study, we successfully synthesized a ternary lanthanum borohydride by introducing the nonmetallic element B into the La-H system, forming robust B-H covalent bonds that lower the pressure required to stabilize the superconducting phase. Electrical transport measurements confirm the presence of superconductivity with a critical temperature (Tc) of up to 106 K at 90 GPa, as evidenced by zero resistance and Tc shift under an external magnetic field. X-ray diffraction and transport measurements identify the superconducting compound as LaB2H8, a nonclathrate hydride, whose crystal structure remains stable at pressures as low as ∼ half megabar (59 GPa). Stabilizing superconductive stoichiometric LaB2H8 in a submegabar pressure regime marks a substantial advancement in the quest for high-Tc superconductivity in polynary hydrides, bringing us closer to the ambient pressure conditions.

17.
Front Cardiovasc Med ; 11: 1391534, 2024.
Article in English | MEDLINE | ID: mdl-38818215

ABSTRACT

Objective: This study aimed to evaluate the impact of early rhythm control (ERC) on the occurrence of cardiocerebrovascular events in patients diagnosed with atrial fibrillation detected after stroke (AFDAS). Methods: A systematic search was conducted across nine databases from inception to October 15, 2023 to identify clinical trials comparing ERC with usual care interventions in AFDAS patients. The primary outcome assessed was recurrent stroke, with secondary outcomes including all-cause mortality, adverse events related to arrhythmias, and dementia. Results: Analysis of five studies, consisting of two randomized clinical trials (RCTs) involving 490 patients and three cohort studies involving 95,019 patients, revealed a reduced rate of recurrent stroke [odds ratio (OR) = 0.30, 95% confidence interval (CI) 0.11-0.80, P = 0.016 in RCTs; OR = 0.64, 95% CI 0.61-0.68, P < 0.00001 in cohort studies] and all-cause mortality (hazards ratio = 0.94, 95% CI 0.90-0.98, P = 0.005 in cohort studies) in the ERC group compared to the usual care group. In addition, ERC was associated with superior outcomes in terms of dementia. Conclusions: Patients with AFDAS who underwent ERC treatment exhibited a decreased risk of cardiocerebrovascular events compared to those receiving usual care. These results support the potential benefits of implementing an ERC strategy for this specific patient population. Systematic Review Registration: https://www.crd.york.ac.uk/PROSPERO/, Identifier [CRD42023465994].

18.
Chin Med J (Engl) ; 2024 May 27.
Article in English | MEDLINE | ID: mdl-38802283

ABSTRACT

ABSTRACT: Acute kidney injury (AKI) is a common clinically critical syndrome in hospitalized patients with high morbidity and mortality. At present, the mechanism of AKI has not been fully elucidated, and no therapeutic drugs exist. As known, glycolytic product lactate is a key metabolite in physiological and pathological processes. The kidney is an important gluconeogenic organ, where lactate is the primary substrate of renal gluconeogenesis in physiological conditions. During AKI, altered glycolysis and gluconeogenesis in kidneys significantly disturb the lactate metabolic balance, which exert impacts on the severity and prognosis of AKI. Additionally, lactate-derived posttranslational modification, namely lactylation, is novel to AKI as it could regulate gene transcription of metabolic enzymes involved in glycolysis or Warburg effect. Protein lactylation widely exists in human tissues and may severely affect non-histone functions. Moreover, the strategies of intervening lactate metabolic pathways are expected to bring a new dawn for the treatment of AKI. This review focused on renal lactate metabolism, especially in proximal renal tubules after AKI, and updated recent advances of lactylation modification, which may help to explore potential therapeutic targets against AKI.

19.
J Colloid Interface Sci ; 669: 383-392, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38718591

ABSTRACT

Phase junctions exhibit great potential in photocatalytic energy conversion, yet the narrow light response region and inefficient charge transfer limit their photocatalytic performance. Herein, an anatase/rutile phase junction modified by plasmonic TiN and oxygen vacancies (TiN/(A-R-TiO2-Ov)) is prepared through an in-situ thermal transformation from TiN for efficient photothermal-assisted photocatalytic hydrogen production for the first time. The content of TiN, oxygen vacancies, and phase components in TiN/(A-R-TiO2-Ov) hybrids can be well-adjusted by tuning the heating time. The as-prepared photocatalysts display a large specific area and wide light absorption due to the synergistic effect of plasmonic excitation, oxygen vacancies, and bandgap excitations. Meanwhile, the multi-interfaces between TiN, anatase, and rutile provide built-in electric fields for efficient separation of photoinduced carriers and hot electron injection via ohmic contact and type-Ⅱ band arrangement. As a result, the TiN/(A-R-TiO2-Ov) photocatalyst shows an excellent photocatalytic hydrogen generation rate of 15.07 mmol/g/h, which is 20.6 times higher than that of titanium dioxide P25. Moreover, temperature-dependent photocatalytic tests reveal that the excellent photothermal conversion caused by plasmonic heating and crystal lattice vibrations in TiN/(A-R-TiO2-Ov) has about 25 % enhancement in photocatalysis (18.84 mmol/g/h). This work provides new inspiration for developing high-performance photocatalysts by optimizing charge transfer and photothermal conversion.

20.
Inorg Chem ; 63(21): 9701-9705, 2024 May 27.
Article in English | MEDLINE | ID: mdl-38728855

ABSTRACT

In this study, new hybrid birefringent crystals of (C8H7N2O2)2[Bi2Br8]·2H2O and (C8H7N2O2)6[Bi2Cl10]Cl2·2H2O were successfully synthesized by introducing a new birefringent group [C8H7N2O2]+ by a simple aqueous solution evaporation method. They crystallize in the P21/n space group, and their structure consists mainly of the π-conjugated group [C8H7N2O2]+ and the octahedron centered on Bi3+. By first-principles calculations, the birefringence response comes from the [C8H7N2O2]+ group with a planar π-conjugated structure. Meanwhile, the synthesis, structure, first-principles calculations, and optical properties are reported in this paper.

SELECTION OF CITATIONS
SEARCH DETAIL