Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 37
Filter
Add more filters








Publication year range
1.
J Am Chem Soc ; 146(25): 17517-17529, 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38869959

ABSTRACT

Despite the widespread use of hydrophilic building blocks to incorporate 18F and improve tracer pharmacokinetics, achieving effective leaving group-mediated nucleophilic 18F-fluorination in water (excluding 18F/19F-exchange) remains a formidable challenge. Here, we present a water-compatible SN2 leaving group-mediated 18F-fluorination method employing preconjugated "AquaF" (phosphonamidic fluorides) building blocks. Among 19 compact tetracoordinated pentavalent P(V)-F candidates, the "AquaF" building blocks exhibit superior water solubility, sufficient capacity for 18F-fluorination in water, and excellent in vivo metabolic properties. Two nitropyridinol leaving groups, identified from a pool of leaving group candidates that further enhance the precursor water solubility, enable 18F-fluorination in water with a 10-2 M-1 s-1 level reaction rate constant (surpassing the 18F/19F-exchange) at room temperature. With the exergonic concerted SN2 18F-fluorination mechanism confirmed, this 18F-fluorination method achieves ∼90% radiochemical conversions and reaches a molar activity of 175 ± 40 GBq/µmol (using 12.2 GBq initial activity) in saline for 12 "AquaF"-modified proof-of-concept functional substrates and small-molecule 18F-tracers. [18F]AquaF-Flurpiridaz demonstrates significantly improved radiochemical yield and molar activity compared to 18F-Flurpiridaz, alongside enhanced cardiac uptake and heart/liver ratio in targeted myocardial perfusion imaging, providing a comprehensive illustration of "AquaF" building blocks-assisted water-compatible SN2 18F-fluorination of small-molecule radiotracers.


Subject(s)
Fluorine Radioisotopes , Halogenation , Water , Fluorine Radioisotopes/chemistry , Water/chemistry , Animals , Radiopharmaceuticals/chemistry , Radiopharmaceuticals/chemical synthesis , Mice , Positron-Emission Tomography , Solubility , Molecular Structure , Radioactive Tracers
2.
Int J Biol Macromol ; 274(Pt 1): 133238, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38897493

ABSTRACT

Normal and waxy maize starches were treated with mild alkali treatment (pH 8.5, 9.9, 11.3) in two temperature-time combinations (25 °C for 1 h and 50 °C for 18 h) to investigate the effect on starch structure and properties. Mild alkali treatment partly removed the starch granule-associated proteins and lipids of normal (from 0.31 % to 0.24 % and from 0.77 % to 0.55 %, respectively) and waxy maize starches (from 0.22 % to 0.18 % and from 0.24 % to 0.15 %, respectively). Gelatinization enthalpy of waxy maize starch increased with alkali treatment from 16.20 J·g-1 to 21.95 J·g-1, indicating that amylopectin (AP) rearrangement and AP-AP double helices formation might occur. But amylose could inhibit these effects by restricting mobility of amylopectin, and no such changes occurred for normal maize starch. Alkali treatment decreased gelatinization temperature and increased peak and final viscosity. Alkali treatment decreased trough viscosity and increased setback of normal maize starch. The hydrothermal treatment promoted the effect of alkali, attributed to the more rapid molecular motion at higher temperature. Normal and waxy starches showed different changes after alkali treatment, indicating that amylose played an important role in controlling the effect of alkali and hydrothermal treatment, primarily as an obstructer of amylopectin rearrangement in mild alkali treatment.

3.
J Agric Food Chem ; 72(22): 12842-12858, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38767652

ABSTRACT

Granule-associated surface lipids (GASLs) and internal lipids showed different lipid-amylose relationships, contents, and distributions, suggesting their differing biological origins and functions, among waxy, normal, and high-amylose rice starch. The GASL content mainly depended on the pore size, while internal lipids regulated starch biosynthesis, as indicated by correlations of internal lipids with the chain length distribution of amylopectin and amylose content. Of the 1346 lipids detected, 628, 562, and 408 differentially expressed lipids were observed between normal-waxy, high-amylose-waxy, and normal-high-amylose starch, respectively. After the removal of GASLs, the higher lysophospholipid content induced greater decreases in the peak and breakdown viscosity and swelling power, while the highest digestibility increase was found with the highest triacylglycerol content. Thus, different GASL compositions led to different digestibility, swelling, and pasting outcomes. This study sheds new light on the mechanism of the role of GASLs in the structure and properties of starch, as well as in potential modifications and amyloplast membrane development.


Subject(s)
Amylose , Digestion , Lipidomics , Lipids , Oryza , Starch , Oryza/chemistry , Oryza/metabolism , Amylose/metabolism , Amylose/analysis , Amylose/chemistry , Lipids/chemistry , Starch/chemistry , Starch/metabolism , Viscosity
4.
Foods ; 13(8)2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38672871

ABSTRACT

Studying diversity in local barley varieties can help advance novel uses for the grain. Therefore, starch was isolated from nine Ethiopian food barley varieties to determine starch structural, pasting, thermal, and digestibility characteristics, as well as their inter-relationships. The amylose content in the varieties significantly varied from 24.5 to 30.3%, with a coefficient of variation of 6.1%. The chain length distributions also varied significantly, and fa, fb1, fb2, and fb3 ranged from 26.3 to 29.0, 48.0 to 49.7, 15.0 to 15.9, and 7.5 to 9.5%, respectively. Significant variations were also exhibited in absorbance peak ratios, as well as thermal, pasting, and in vitro digestibility properties, with the latter two parameters showing the greatest diversity. Higher contents of amylose and long amylopectin fractions contributed to higher gelatinization temperatures and viscosities and lower digestibility. Structural characteristics showed strong relationships with viscosity, thermal, and in vitro digestibility properties. Cross 41/98 and Dimtu varieties are more suitable in functional food formulations and for bakery products. These results might inspire further studies to suggest target-based starch modifications and new product development.

5.
J Mol Model ; 30(4): 115, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38557702

ABSTRACT

CONTEXT: Based on the first principles, the influence of S-atom doping on the electronic and optical properties of stanene is comprehensively examined in this work. The results show that pure stanene is a quasi-metal with zero bandgap. After doping with an S atom, opening the bandgap of pure stanene becomes possible and the state of the stanene is converted from quasi-metal to semiconductor. Analysis of the density of states reveals that the density of states of all doped systems is primarily made of the p-orbital of the Sn. The overlap population analysis showed that charge transfer occurs between S and Sn atoms under different doping concentrations. The charge transfer increases with increasing doping concentration. The charge transfer reaches a maximum at a doping concentration of 9.38%. The increase in doping concentration causes blue-shifting of the absorption and reflection peaks of the doped system as compared to those of pure stanene. It is expected that these studies can provide theoretical guidance for the practical application of stanene in optoelectronic devices. METHODS: All simulations are undertaken with the Cambridge Sequential Total Energy Package (CASTEP) (Wei et al. Physica B: Condensed Matter 545:99, 2018; Bafekry et al. Phys Chem Chem Phys, 2021; Zala et al. Appl Surf Sci, 2022; Bafekry et al. Nanotechnology, 2021; Bafekry et al. Phys Chem Chem Phys, 2021; Bafekry et al. J Phys: Condens Matter, 2021), which is based on density functional theory (DFT). For the exchange correlation, the generalized gradient approximation (GGA) is implemented with the Perdew-Burke-Ernzerhof (PBE) functional Perdew et al. Phys Rev B Condens Matter 48:4978, 1993. Using the Monkhorst-Pack technique, a specific K-point sample of the Brillouin zone was carried out Monkhorst and Pack Phys Rev B 13:5188, 1976. After the convergence tests, the K-point grid was set to 3 × 3 × 1. The plane-wave truncation energy was set to 400 eV. The residual stress for all atoms was 0.03 eV/Å. The energy convergence criterion was 1.0 × 10-5 eV. To prevent recurring interactions between the layers, a vacuum layer with a thickness of 20 Å was established in the Z-direction.

6.
Zhongguo Shi Yan Xue Ye Xue Za Zhi ; 32(1): 269-273, 2024 Feb.
Article in Chinese | MEDLINE | ID: mdl-38387933

ABSTRACT

OBJECTIVE: To study the correlation between the number of hemophagocytes and peripheral blood cells in bone marrow of patients with fever of unknown origin. METHODS: A total of 465 patients with fever of unknown origin in our hospital from January 2019 to December 2021 were selected as the research objects, which was to reviewed retrospectively the correlation between the number of hemophagocytes and peripheral blood cells in bone marrow. RESULTS: The positive rates of hemophagocytes detected in the three lines decreased group, the two lines decreased group, the one line decreased group, normal group of the three lines and at least one of the three lines increased group were 86.4%, 62.1%, 38.3%, 34.6% and 33.3%, respectively. The number of hemophagocytes per unit area in the three lines decreased group was significantly higher than that in the other four groups ( P < 0.001). The number of hemophagocytes per unit area in the two lines decreased group was higher than that in the one line decreased group, normal group of three lines and at least one of the three lines increased group ( P < 0.01). There was no significant difference in the number of hemophagocytes per unit area between the group with a decreased number of one line and the other two groups with a normal number of three lines and the group with at least one increased number of three lines (P >0.05). The missed rates of hemophagocytes in the five groups were 15.78%, 22.03%, 62.22%, 77.78% and 53.84%, respectively. CONCLUSION: For patients with fever of unknown origin, especially those with obvious decrease in the number of three lines and two lines in peripheral blood cells, which should pay attention to the detection of hemophagocytes in bone marrow. Meanwhile, if the number of three lines was normal even at least one of the three lines increased, the presence of hemophagocytes in the bone marrow slice should be also carefully observed.


Subject(s)
Bone Marrow , Fever of Unknown Origin , Humans , Retrospective Studies , Blood Cells , Bone Marrow Cells
7.
J Mol Model ; 30(3): 63, 2024 Feb 07.
Article in English | MEDLINE | ID: mdl-38326569

ABSTRACT

CONTEXT: This study explores, for the first time, using first principles, the impact of substitutional doping with boron (B), carbon (C), and nitrogen (N) on the adsorption of chromium (Cr) on monolayer MoS2. The effects of doping on the Cr adsorption behavior of MoS2 were investigated using four MoS2 systems, namely, pure, boron (B)-doped, carbon (C)-doped, and nitrogen (N)-doped, in order to gain an in-depth understanding of the mechanism of the effects of doping on the electronic structure and optical properties of Cr adsorbed by MoS2, to optimize the properties of MoS2, to explore new areas of application, and to promote the development of materials science. Four MoS2 adsorption systems of Cr adsorption on pure, B-doped, C-doped, and N-doped MoS2 were optimized, and the optimized results showed that the stable adsorption location of Cr on both pure and doped MoS2 was the hollow location at the top of the folded hexagon. The findings reveal that pure MoS2 has an adsorption effect on Cr, and doped elements B, C, and N can promote the adsorption of Cr on MoS2, and the strong and weak order of this promotion is B > C > N. METHODS: In this paper, we use the CASTEP module in the simulation software Materials Studio to perform simulation calculations and analyses to optimize the simulation of Cr adsorption by MoS2 doped with B, C, and N atoms using the generalized gradient approximation (GGA) plane-wave pseudo-potential method (Perdew et al. Phys Rev Lett 77(18):3865-3968, 1996), as well as Perdew-Burke-Ernzerhof (PBE) generalized functionals (Segall et al. J Phys: Condens Matter 14(11):2717-2744, 2022). The convergence test reveals that it is more reasonable to set the K-point network to 3 × 3 × 1 and the truncation energy to 400 eV. In this paper, a 3 × 3 × 1 supercell structure with 18 S atoms and 9 Mo atoms is selected. The convergence value of the iteration accuracy is 1.0e - 5eV/atom, and all the atomic forces are less than 0.02eV/Å. Additionally, to prevent MoS2 interlayer interaction, a vacuum layer with a thickness of 18 Å is set in the C direction. The geometrical optimization of the model is performed first, and then the corresponding adsorption energies of the model and the nature of the electronic structure are analyzed.

8.
J Mol Model ; 30(3): 75, 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38376546

ABSTRACT

CONTEXT: To lessen the impact of the dangerous metal Cr, this paper applies the first principles to investigate the adsorption behavior and photoelectric properties of GaS on Cr. The effects of doped GaS on Cr adsorption behavior are investigated with four GaS systems, which are pure, boron (B)-doped, nitrogen (N)-doped, and oxygen (O)-doped, in order to maximize the characteristics of GaS for use in novel sectors, to obtain understanding of the impact of doping on the electronic structure and optical properties of GaS adsorption of Cr, as well as to promote the development of the material. Four GaS adsorbed Cr systems, pure, B-doped, N-doped, and O-doped, are optimized, and the optimized results show that the stable adsorption position of Cr on both pure and doped GaS is the top position of Ga atoms, whereas doped elements B, N, and O can promote the adsorption of Cr on GaS, and the order of the strength of this promotion is B > N > O. METHOD: In this paper, molecular simulation calculations and analyses using the CASTEP module in the software Materials Studio are performed to simulate the structure optimization of GaS-adsorbed Cr materials doped with B, N, and O atoms by using the generalized gradient approximation (GGA) plane-wave pseudopotential approach [1] and the Perdew-Burke-Ernzerhof (PBE) generalized function [2]. From the convergence test, it is reasonable to set the K-point network to 4 × 4 × 1 and the truncation energy to 500 eV [3]. In this paper, a 3 × 3 × 1 supercell structure with 18 S atoms and 18 Ga atoms is selected. The convergence value of the iterative accuracy is 1.0e - 5 eV/atom, and all the atomic forces are less than 0.02 eV/Å. A vacuum layer of 16 Å is also set in the C direction to avoid interlayer interactions of GaS. First, we optimize the geometry of the model and then analyze the nature of the adsorption energy and electronic structure corresponding to the model.

9.
J Mol Model ; 30(2): 27, 2024 Jan 09.
Article in English | MEDLINE | ID: mdl-38194209

ABSTRACT

CONTEXT: In this study, the electronic structures and optical properties of the pure MoSe2 and O-doped MoSe2 systems under different shear deformations are calculated based on the first-principles approach. It is hoped to provide new possibilities for the design of novel controllable optoelectronic devices and to provide guidance for the application of MoSe2 in the field of optoelectronic devices. The findings indicate that both pure MoSe2 and O-doped MoSe2 systems are somewhat impacted by shear deformation. The pure MoSe2 undergoes a transition from direct to indirect and then to direct bandgap under shear deformation, but still maintains the semiconductor properties. The bandgap of the doped system changes from a direct to an indirect bandgap at 8% shear deformation. According to the examination of the density of states, we find that the density of states of the pure MoSe2 system is mainly contributed by the Mo-d and Se-p orbitals, and the total density of states of the system after O-atom doping mainly originates from the results of the contributions of the Mo-d, Se-p, and O-p orbitals. Optical property analysis reveals that the conductivity and peak value of the pure MoSe2 system are gradually red-shifted toward the low-energy region with the increase of shear deformation. The dielectric function of the O-doped MoSe2 system is red-shifted in the region of 6~10% shear deformation, and the degree of red-shift rises with deformation amount. The findings demonstrate that the electrical structure and optical characteristics of the O-doped MoSe2 system may be modulated effectively by shear deformation, providing a theoretical foundation for expanding the usage of MoSe2 materials in the field of optoelectronic devices. METHODS: This study is founded on the CASTEP module in the Materials-Studio software within the first-principles of the density-functional theory framework. The photoelectric properties of the intrinsic and doped systems under shear deformation are calculated using the Perdew-Burke-Ernzerh (PBE) of generalized function under the generalized gradient approximation (GGA). The Monkhorst-Pack special K-point sampling method is used in the calculations, and a 5 × 5 × 1 K-point grid is used for the calculations with a plane-wave truncation energy of 400 eV in the optimization of the structure of each model. After geometrical optimization, the energy convergence criterion for each atom is 1 × 10-5 eV/atom, the force convergence criterion is 0.05 eV/Å, and a vacuum layer of 20 Å in the c-direction is set.

10.
J Mol Model ; 30(2): 29, 2024 Jan 09.
Article in English | MEDLINE | ID: mdl-38194004

ABSTRACT

CONTEXT: In this paper, the structural stability, electronic structure, and optical properties of monolayer MoSe2 doped with C, O, Si, S, and Te atoms, respectively, under defective conditions are investigated based on first principles. It is found that the system is more structurally stable when defecting a single Se atom as compared to defecting a single Mo or two Se atoms. The electronic structure analysis of the system reveals that intrinsic MoSe2 is a direct bandgap semiconductor. The bandgap value of the system decreases with a single Se atom defect and introduces two new impurity energy levels in the conduction band. The defective systems doped with C and Si atoms all exhibit P-type doping. The total density of states of intrinsic MoSe2 is mainly contributed by the Mo-d and Se-p orbitals, and new density of state peaks appears near the conduction band after the defects of Se atoms. The total density of states of the defective system doped by each atom is mainly contributed by Mo-d, Se-p, and the result of the p orbital contribution of each dopant atom. By analyzing the dielectric function of each system, it is found that the intrinsic MoSe2 has the lowest static permittivity and the C-doped defect system has the highest static permittivity, which reaches 21.42. The C- and Si-doped defect systems are the first to start absorbing the light, and the intrinsic MoSe2 absorbs the light later, with its absorption edge starting at 1.25 eV. In the visible range, the reflection peaks of the systems move toward the high-energy region and the blue-shift phenomenon occurs. It is hoped that applying modification means to modulate the physical properties of the two-dimensional materials will provide some theoretical basis for broadening the application of monolayer MoSe2 in the field of optoelectronic devices. METHODS: This study utilizes the first principle computational software package MS8.0 (Materials studio8.0) under density functional theory (DFT). The exchange-correlation potential (GGA-PBE) is described by the Perdew-Burke-Ernzerhof correlation function in CASTEP, and the potential function adopts the ultrasoft pseudopotential in the inverse space formulation. The plane wave truncation energy Ecut is set to 400 eV, the K-point is taken as 5 × 5 × 1, and the force convergence criterion is 0.05 eV/Å. The convergence accuracy of the total energy of the system is less than 1.0 × 10-5 eV/atom, the tolerance shift is less than 0.002 Å, and the stress deviation is less than 0.1 GPa. The vacuum layer is taken as 15 Å, which is intended to minimize the interlayer force. The vacuum layer was set to 15 Å to avoid the effect of layer-to-layer interaction forces in the crystal cell.

11.
Int J Biol Macromol ; 259(Pt 1): 129139, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38176497

ABSTRACT

Normal and waxy maize starches with and without removal of starch granule surface lipids (SGSLs) were crosslinked by POCl3 (0.01 %, 0.1 % and 1 %). Crosslinked starches showed lower swelling power and solubility, but higher pasting viscosity, pseudoplasticity, thixotropy, storage modulus and loss modulus. Crosslinking increased the double helical structure but decreased the crystallinity for waxy maize starch. The phosphorus content of crosslinked waxy maize starches after SGSLs removal increased, indicating SGSLs removal promoted crosslinking. SGSLs removal increased G' and G" for crosslinked waxy maize starches. SGSLs removal increased SP and solubility and decreased pasting and rheological parameters of starches. With increased POCl3 dosage, the effect of SGSLs removal on starch properties was gradually suppressed by crosslinking. Waxy and normal maize starches showed significantly different changes with crosslinking and SGSLs removal, and the presence of amylose seemed to impede the effect of crosslinking and SGSLs removal. The removal of SGSLs could extend the application of crosslinked starch in frozen foods, drinks, and canned foods as thickener and stabilizer, due to its better hydrophilicity and viscous liquid-like rheological properties. The study will assist carbohydrate chemists and food processors in developing new food products.


Subject(s)
Starch , Zea mays , Zea mays/chemistry , Starch/chemistry , Amylose/chemistry , Amylopectin/chemistry , Viscosity , Waxes/chemistry
12.
Int J Biol Macromol ; 257(Pt 2): 128535, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38048925

ABSTRACT

Potato noodles are a popular food due to their unique texture and taste, but native potato starch often fails to meet consumer demands for precise textural outcomes. The effect of blending small granule (waxy amaranth, non-waxy oat and quinoa) starch with potato starch on the properties of noodles was investigated to enhance quality of noodles. Morphological results demonstrated that small granule starch filled gaps between potato starch granules, some of which gelatinized incompletely. Meanwhile, XRD and FTIR analysis indicated that more ordered structures and hydrogen bonding among starch granules increased with addition of small granule starch. The addition of oat or quinoa starch increased gel elasticity, decreased viscosity of the pastes, and increased the tensile strength of noodles, while addition of 30 % and 45 % waxy amaranth starch did not increase G' value of gel or tensile strength of noodles. These results indicated that amylose molecules played an important role during retrogradation, and may intertwine and interact with each other to enhance the network structure of starch gel in potato starch blended with oat or quinoa starch. This study provides a natural way to modify potato starch for desirable textural properties of noodle product.


Subject(s)
Solanum tuberosum , Solanum tuberosum/chemistry , Starch/chemistry , Amylose/chemistry , Amylopectin/chemistry , Flour/analysis
13.
Phytopathology ; : PHYTO08230285R, 2024 Mar 18.
Article in English | MEDLINE | ID: mdl-37942861

ABSTRACT

Colletotrichum fructicola is the major pathogen of anthracnose in tea-oil trees in China. Control of anthracnose in tea-oil trees mainly depends on the application of chemical fungicides such as carbendazim. However, the current sensitivity of C. fructicola isolates in tea-oil trees to carbendazim has not been reported. Here, we tested the sensitivity of 121 C. fructicola isolates collected from Guangdong, Guangxi, Guizhou, Hainan, Hunan, Jiangsu, and Jiangxi provinces in China to carbendazim. One hundred and ten isolates were sensitive to carbendazim, and 11 isolates were highly resistant to carbendazim. The growth rates, morphology, and pathogenicity of three resistant isolates were identical to those of three sensitive isolates, which indicates that these resistant isolates could form a resistant population under carbendazim application. These results suggest that carbendazim should not be the sole fungicide in control of anthracnose in tea-oil trees; other fungicides with different mechanisms of action or mixtures of fungicides could be considered. In addition, bioinformatics analysis identified two ß-tubulin isotypes in C. fructicola: Cfß1tub and Cfß2tub. E198A mutation was discovered in the Cfß2tub of three carbendazim-resistant isolates. We also investigated the functional roles of two ß-tubulin isotypes. CfΔß1tub exhibited slightly increased sensitivity to carbendazim and normal phenotypes. Surprisingly, CfΔß2tub was highly resistant to carbendazim and showed a seriously decreased growth rate, conidial production, pathogenicity, and abnormal hyphae morphology. Promoter replacement mutant CfΔß2-2×ß1 showed partly restored phenotypes, but it was still highly resistant to carbendazim, which suggests that Cfß1tub and Cfß2tub are functionally interchangeable to a certain degree.

14.
Int J Biol Macromol ; 256(Pt 1): 128407, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38007010

ABSTRACT

Characterization of local varietal barley quality diversity can help boost further development of novel value-added utilization of the grain. Therefore, in this study starch was isolated from 11 Ethiopian malting barley varieties to determine starch structural, pasting, thermal and digestibility characteristics, and their inter-relationships. The varieties showed significant differences in all amylopectin chain length fractions, and the A, B1, B2 and B3 chains ranged from 25.4 to 30.1, 47.4-50.1, 14.3-16.0 and 7.8-9.0 %, respectively. The varieties also exhibited significant variation in amylose content, relative crystallinity, absorbance peak ratios, pasting and thermal properties. Moreover, on average about 83 % raw starch of the varieties was classified as slowly digestible and resistant, whereas after gelatinization this was reduced to 9 %. Molecular and crystalline structures were strongly related to pasting properties, thermal characteristics and in vitro digestibility of the starches. The study provides information on some starch quality characteristics and the inter-relationships among the parameters, and might inspire further studies to suggest possible target-based starch modifications, and future novel utilization of barley. More studies are required to investigate the association of starch quality parameters with malting quality attributes.


Subject(s)
Hordeum , Starch , Starch/chemistry , Molecular Structure , Amylopectin/chemistry , Amylose/chemistry , Viscosity
15.
J Sci Food Agric ; 104(5): 2897-2906, 2024 Mar 30.
Article in English | MEDLINE | ID: mdl-38018273

ABSTRACT

BACKGROUND: Highland hulless barley has garnered attention as a promising economic product and a potential healthy food ingredient. The present study aimed to comprehensively investigate the molecular structure of extractable fibers obtained from a specific highland hulless barley. Water-soluble fiber (WSF) and alkaline-soluble fiber (ASF) were extracted using enzymatic digestion and an alkaline method, respectively. The purified fibers underwent a thorough investigation for their structural characterization. RESULTS: The monosaccharide composition revealed that WSF primarily consisted of glucose (91.7%), whereas ASF was composed of arabinose (54.5%) and xylose (45.5%), indicating the presence of an arabinoxylan molecule with an A/X ratio of 1.2. The refined structural information was further confirmed through methylation, 1 H NMR and Fourier-transform infrared spectroscopy analyses. WSF fiber exclusively exhibited α-anomeric patterns, suggesting it was an α-glucan. It has a low molecular weight of 5 kDa, as determined by gel permeation chromatography. Conversely, ASF was identified as a heavily branched arabinoxylan with 41.55% of '→2,3,4)-Xylp-(1→' linkages. ASF and WSF exhibited notable differences in their morphology, water absorption capabilities and rheological properties. CONCLUSION: Based on these findings, molecular models of WSF and ASF were proposed. The deep characterization of these fiber structures provides valuable insights into their physicochemical and functional properties, thereby unlocking their potential applications in the food industry. © 2023 Society of Chemical Industry.


Subject(s)
Hordeum , Hordeum/chemistry , Glucans/analysis , Monosaccharides , Food Industry , Food-Processing Industry
16.
Int J Biol Macromol ; 254(Pt 3): 127991, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37949270

ABSTRACT

Roles of temperature, moisture and starch granule-associated surface lipids (SGASL) during heat-moisture treatment (HMT) of waxy highland barley starch were elucidated. Starch without SGASL showed a higher increase in ratio (1016/993 cm-1) (0.095-0.121), lamellar peak area (88), radius of gyration (Rg1, 0.9-1.8 nm) and power-law exponents (0.19-0.42) than native starch (0.038-0.047, 46, 0.1-0.6 nm, 0.04-0.14), upon the same increase in moisture or temperature. Thus, removing SGASL promoted HMT. However, after HMT (30 % moisture, 120 °C), native starch showed lower relative crystallinity (RC, 11.67 %) and lamellar peak area (165.0), longer lamellar long period (L, 14.99 nm), and higher increase in peak gelatinization temperature (9.2-13.3 °C) than starch without SGASL (12.04 %, 399.2, 14.52 nm, 4.7-6.1 °C). This suggested that the resulting SGASL-amylopectin interaction further destroyed starch structure. Starch with and without SGASL showed similar trends in RC, lamellar peak area, L and Rg1 with increasing temperature, but different trends with increasing moisture, suggesting that removing SGASL led to more responsiveness to the effects of increasing moisture. Removing SGASL resulted in similar trends (RC and lamellar peak area) with increasing moisture and temperature, suggesting that the presence of SGASL induced different effects on moisture and temperature.


Subject(s)
Amylopectin , Hordeum , Temperature , Hot Temperature , Starch/chemistry , Lipids
17.
J Mol Model ; 29(12): 390, 2023 Nov 30.
Article in English | MEDLINE | ID: mdl-38032390

ABSTRACT

CONTEXT: In this study, the effects of different shear deformations on the structural stability, electronic structure, and optical properties of a Mg atom adsorption system of S vacancy defect SnS2 are systematically investigated based on density functional theory. It is shown that the presence of an S-vacancy defect makes the band gap of the SnS2 system significantly smaller than that of the perfect SnS2 system, and the SnS2 system is changed from a direct band gap semiconductor to an indirect band gap semiconductor. The optimal adsorption position of a Mg atom on the S-vacancy SnS2 system is above the S atom where the adsorption energy is the largest and the system is the most stable. The density of states of the adsorption system is predominantly contributed by the S-3p and Sn-5 s orbital electrons. The imposition of shear deformation leads to the introduction of certain impurity energy levels in the adsorption system, and the forbidden bandwidth near the Fermi energy level decreases. As compared to the intrinsic SnS2, the absorption and reflection peaks of adsorption systems under different shear deformation are red-shifted and appear in the ultraviolet region. This improves the utilization of the adsorption system for ultraviolet light to a great extent. METHODS: The model calculations in this paper are performed using the CASTEP module of the Material Studio (MS) software based on the first principles of Density Functional Theory (DFT) (Wei et al. in Physica B 545:99-106, 2018) for plane wave artifacts. Geometrical optimization and computational procedures are used to calculate the exchange-correlation energy using the Perdew-Burke-Ernzerhof (PBE) generalized function (Perdew et al. in Phys Rev B Condens Matter 48:4978, 1993) of the generalized gradient approximation (GGA). The Monkhorst-Pack method (Monkhorst and Pack in Phys Rev B 13:5188-5192, 1976) was used to rationalize the sampling of the highly symmetric k-points in the Brillouin zone. The grid of k-points is set to be 6 × 6 × 1. The plane-wave truncation energy is set to be 400 eV. The energy convergence criterion is 1.0 × 10-5 eV. The residual stress of all atoms is 0.01 eV/Å. A vacuum layer with a thickness of 15 Å is set up in the z-direction, which ensures that the interactions of the system along the z-axis between the top and the bottom layers can be ignored during the whole simulation process. We construct a 3 × 3 × 1 SnS2 system containing 27 atoms as the computational model. The intrinsic SnS2 contains 9 Sn atoms and 18 S atoms.

18.
Foods ; 12(20)2023 Oct 23.
Article in English | MEDLINE | ID: mdl-37893765

ABSTRACT

Polysaccharides and oligosaccharides are abundantly found in various foods [...].

19.
Foods ; 12(18)2023 Sep 09.
Article in English | MEDLINE | ID: mdl-37761090

ABSTRACT

Young hulless barley leaves are gaining recognition for potential health benefits, and the method of extracting polysaccharides from them is critical for potential food industry applications. This study delves into a comparative analysis of six distinct fiber extraction techniques: hot water extraction; high-pressure steam extraction; alkaline extraction; xylanase extraction; cellulase extraction; and combined xylanase and cellulase extraction. This analysis included a thorough comparison of polysaccharide-monosaccharide composition, structural properties, antioxidant activities (DPPH, ABTS, and FRAP), and rheological properties among fibers extracted using these methods. The results underscore that the combined enzymatic extraction method yielded the highest extraction yield (22.63%), while the rest of the methods yielded reasonable yields (~20%), except for hot water extraction (4.11%). Monosaccharide composition exhibited divergence across methods; alkaline extraction yielded a high abundance of xylose residues, whereas the three enzymatic methods demonstrated elevated galactose components. The extracted crude polysaccharides exhibited relatively low molecular weights, ranging from 5.919 × 104 Da to 3.773 × 105 Da across different extraction methods. Regarding antioxidant activities, alkaline extraction yielded the highest value in the ABTS assay, whereas enzymatically extracted polysaccharides, despite higher yield, demonstrated lower antioxidant capacity. In addition, enzymatically extracted polysaccharides exerted stronger shear thinning behavior and higher initial viscosity.

20.
Int J Biol Macromol ; 240: 124430, 2023 Jun 15.
Article in English | MEDLINE | ID: mdl-37062381

ABSTRACT

The distribution of surface proteins/lipids and their effect on physicochemical properties of wheat A- and B-starch were investigated. Small B-starch with higher surface protein (~1.8 %) and lipid (~0.4 %) contents did not differ significantly from specific surface area of large A-starch (~0.2 % protein and ~0.1 % lipid), indicating surface lipids/proteins for starch are characteristic of their biological origin, not directly related to granule size. The surface of A-starch granule was an integrated membrane structure (lipids covered by proteins). B-starch showed a greater decrease in peak and trough viscosity (130 and 82 cP) than A-starch (99 and 52 cP) after removing surface proteins, perhaps because the presence of residual surface lipid as a membrane protected the rigidity of A-starch granule. B-starch showed a greater increase in consistency coefficient (K) (47.01 Pa·sn) than A-starch (20.33 Pa·sn) after removing surface lipids, possibly because the greater loss of surface lipid as complex with amylose in B-starch retarded retrogradation and reduced K. These results show that different distributions and contents of surface proteins/lipids between wheat A- and B-starch granule contribute to the pasting and rheological properties.


Subject(s)
Membrane Proteins , Triticum , Triticum/chemistry , Starch/chemistry , Amylose/chemistry , Viscosity , Lipids/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL