Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 67
Filter
1.
Hum Reprod ; 2024 Sep 06.
Article in English | MEDLINE | ID: mdl-39241251

ABSTRACT

STUDY QUESTION: What is the molecular landscape underlying the functional decline of human testicular ageing? SUMMARY ANSWER: The present study provides a comprehensive single-cell transcriptomic atlas of testes from young and old humans and offers insights into the molecular mechanisms and potential targets for human testicular ageing. WHAT IS KNOWN ALREADY: Testicular ageing is known to cause male age-related fertility decline and hypogonadism. Dysfunction of testicular cells has been considered as a key factor for testicular ageing. STUDY DESIGN, SIZE, DURATION: Human testicular biopsies were collected from three young individuals and three old individuals to perform single-cell RNA sequencing (scRNA-seq). The key results were validated in a larger cohort containing human testicular samples from 10 young donors and 10 old donors. PARTICIPANTS/MATERIALS, SETTING, METHODS: scRNA-seq was used to identify gene expression signatures for human testicular cells during ageing. Ageing-associated changes of gene expression in spermatogonial stem cells (SSCs) and Leydig cells (LCs) were analysed by gene set enrichment analysis and validated by immunofluorescent and functional assays. Cell-cell communication analysis was performed using CellChat. MAIN RESULTS AND THE ROLE OF CHANCE: The single-cell transcriptomic landscape of testes from young and old men was surveyed, revealing age-related changes in germline and somatic niche cells. In-depth evaluation of the gene expression dynamics in germ cells revealed that the disruption of the base-excision repair pathway is a prominent characteristic of old SSCs, suggesting that defective DNA repair in SSCs may serve as a potential driver for increased de novo germline mutations with age. Further analysis of ageing-associated transcriptional changes demonstrated that stress-related changes and cytokine pathways accumulate in old somatic cells. Age-related impairment of redox homeostasis in old LCs was identified and pharmacological treatment with antioxidants alleviated this cellular dysfunction of LCs and promoted testosterone production. Lastly, our results revealed that decreased pleiotrophin signalling was a contributing factor for impaired spermatogenesis in testicular ageing. LARGE SCALE DATA: The scRNA-seq sequencing and processed data reported in this paper were deposited at the Genome Sequence Archive (https://ngdc.cncb.ac.cn/), under the accession number HRA002349. LIMITATIONS, REASONS FOR CAUTION: Owing to the difficulty in collecting human testis tissue, the sample size was limited. Further in-depth functional and mechanistic studies are warranted in future. WIDER IMPLICATIONS OF THE FINDINGS: These findings provide a comprehensive understanding of the cell type-specific mechanisms underlying human testicular ageing at a single-cell resolution, and suggest potential therapeutic targets that may be leveraged to address age-related male fertility decline and hypogonadism. STUDY FUNDING/COMPETING INTEREST(S): This work was supported by the National Key Research and Development Program of China (2022YFA1104100), the National Natural Science Foundation of China (32130046, 82171564, 82101669, 82371611, 82371609, 82301796), the Natural Science Foundation of Guangdong Province, China (2022A1515010371), the Major Project of Medical Science and Technology Development Research Center of National Health Planning Commission, China (HDSL202001000), the Open Project of NHC Key Laboratory of Male Reproduction and Genetics (KF202001), the Guangdong Province Regional Joint Fund-Youth Fund Project (2021A1515110921, 2022A1515111201), and the China Postdoctoral Science Foundation (2021M703736). The authors declare no conflict of interest.

2.
Mikrochim Acta ; 191(9): 512, 2024 08 06.
Article in English | MEDLINE | ID: mdl-39105857

ABSTRACT

Diphenylalanine(FF)-Zn self-assembly (FS) confined in covalent organic polymers (FS@COPs) with efficient fluorescence was synthesized for fluorescence sensing of biogenic amines, which was one of the most important indicators for monitoring food freshness. FS@COPs combined excellent biodegradability of self-assembled dipeptide with chemical stability, porosity and targeted site recognition of COPs. With an optimal excitation wavelength of 360 nm and an optimal emission wavelength of 450 nm, FS@COPs could be used as fluorescence probes to rapidly visualize and highly sensitive determination of tryptamine (Try) within 15 min, and the linear range was from 40 to 900 µg L-1 with a detection limit of 63.08 µg kg-1. Importantly, the FS@COPs showed a high fluorescence quantum yield of 11.28%, and good stability, solubility, and selectivity, which could successfully achieve the rapid, accurate and highly sensitive identification of Try. Furthermore, we revealed the mechanism of FS@COPs for fluorescence sensing of targets. The FS@COPs system was applied to the fluorescence sensing of Try in real samples and showed satisfactory accuracy of 93.02%-105.25%.


Subject(s)
Dipeptides , Fluorescent Dyes , Limit of Detection , Spectrometry, Fluorescence , Tryptamines , Tryptamines/analysis , Tryptamines/chemistry , Dipeptides/chemistry , Dipeptides/analysis , Fluorescent Dyes/chemistry , Spectrometry, Fluorescence/methods , Meat Products/analysis , Polymers/chemistry
3.
J Arthroplasty ; 2024 Jul 24.
Article in English | MEDLINE | ID: mdl-39053665

ABSTRACT

BACKGROUND: Metabolic syndrome (MetS) is an independent risk factor for postoperative complications. This study aimed to evaluate the associated risk of MetS for perioperative complications, especially urinary complications, in patients who underwent primary total knee arthroplasty (TKA) or total hip arthroplasty (THA). METHODS: We used a publicly available all-payer administrative database to identify patients undergoing TKA and THA from 2016 to 2020. The primary exposure of interest was MetS. Multivariable adjusted models based on propensity score matching were used to evaluate the association of MetS components with acute kidney injury (AKI), urinary tract infection (UTI), and acute posthemorrhagic anemia (APHA) in patients who underwent TKA and THA. A counterfactual-based mediation analysis was conducted to investigate the mediating effect of APHA on the relationship between MetS and AKI. RESULTS: The analysis included 2,097,940 (16.4% with MetS) THA and 3,073,310 (24.0% with MetS) TKA adult hospitalizations. Multivariable adjustment analysis indicated MetS was associated with an increased risk of AKI (odds ratio [OR] 1.78, 95% confidence interval [CI] 1.69 to 1.89 for THA; OR 1.88, 95% CI 1.79 to 1.96 for TKA), UTI (OR 1.13, 95% CI 1.03 to 1.23 for THA; OR 1.26, 95% CI 1.17 to 1.35 for TKA), and APHA (OR 1.17, 95% CI 1.14 to 1.20 for THA; OR 1.7, 95% CI 1.15 to 1.19 for TKA). The risk of AKI increased with the number of MetS components, with ORs ranging from 2.58 to 9.46 in TKA patients and from 2.22 to 5.75 in THA patients. This increase was particularly associated with diabetes and hypertension, which were the most significant associated risk factors. Furthermore, APHA mediated the association between MetS and AKI. CONCLUSIONS: The prevalence of MetS is increasing in TKA and THA patients. Metabolic syndrome was associated with increased risk of AKI, UTI, and APHA. The risk of AKI increased with each additional MetS component, with diabetes and hypertension contributing most. In addition, APHA may play a partial mediating role in MetS-induced AKI.

4.
Mikrochim Acta ; 191(7): 436, 2024 07 01.
Article in English | MEDLINE | ID: mdl-38954059

ABSTRACT

A fluorescence probe based on molecularly imprinted polymers on red emissive biomass-derived carbon dots (r-BCDs@MIPs) was developed to detect tyramine in fermented meat products. The red emissive biomass-derived carbon dots (r-BCDs) were synthesized by the one-step solvothermal method using discarded passion fruit shells as raw materials. The fluorescence emission peak of r-BCDs was at 670 nm, and the relative quantum yield (QY) was about 2.44%. Molecularly imprinted sensing materials were prepared with r-BCDs as fluorescent centers for the detection of trace tyramine, which showed a good linear response in the concentration range of tyramine from 1 to 40 µg L-1. The linear correlation coefficient was 0.9837, and the limit of detection was 0.77 µg L-1. The method was successfully applied to the determination of tyramine in fermented meat products, and the recovery was 87.17-106.02%. The reliability of the results was verified through high-performance liquid chromatography (HPLC). Furthermore, we combined the r-BCDs@MIPs with smartphone-assisted signal readout to achieve real-time detection of tyramine in real samples. Considering its simplicity and convenience, the method could be used as a rapid and low-cost promising platform with broad application prospects for on-site detection of trace tyramine with smartphone-assisted signal readout.


Subject(s)
Carbon , Fluorescent Dyes , Limit of Detection , Meat Products , Molecularly Imprinted Polymers , Quantum Dots , Smartphone , Tyramine , Tyramine/analysis , Tyramine/chemistry , Carbon/chemistry , Quantum Dots/chemistry , Meat Products/analysis , Fluorescent Dyes/chemistry , Molecularly Imprinted Polymers/chemistry , Spectrometry, Fluorescence/methods , Biomass , Fermentation
5.
J Neuroinflammation ; 21(1): 181, 2024 Jul 27.
Article in English | MEDLINE | ID: mdl-39068463

ABSTRACT

Treating Multiple sclerosis (MS), a well-known immune-mediated disease characterized by axonal demyelination, is challenging due to its complex causes. Naphthalenedione, present in numerous plants, is being explored as a potential medicine for MS due to its immunomodulatory properties. However, its effects on lymphocytes can vary depending on factors such as the specific compound, concentration, and experimental conditions. In this study, we aim to explore the therapeutic potential of 2-bromo-1,4-naphthalenedione (BrQ), a derivative of naphthalenedione, in experimental autoimmune encephalomyelitis (EAE), an animal model of MS, and to elucidate its underlying mechanisms. We observed that mice treated with BrQ exhibited reduced severity of EAE symptoms, including lower clinical scores, decreased leukocyte infiltration, and less extensive demyelination in central nervous system. Furthermore, it was noted that BrQ does not directly affect the remyelination process. Through cell-chat analysis based on bulk RNA-seq data, coupled with validation of flow analysis, we discovered that BrQ significantly promotes the expansion of CD8+ T cells and their interactions with other immune cells in peripheral immune system in EAE mice. Subsequent CD8+ T cell depletion experiments confirmed that BrQ alleviates EAE in a CD8+ T cell-dependent manner. Mechanistically, expanded CD8+ cells were found to selectively reduce antigen-specific CD4+ cells and subsequently inhibit Th1 and Th17 cell development in vivo, ultimately leading to relief from EAE. In summary, our findings highlight the crucial role of BrQ in modulating the pathogenesis of MS, suggesting its potential as a novel drug candidate for treating MS and other autoimmune diseases.


Subject(s)
CD8-Positive T-Lymphocytes , Encephalomyelitis, Autoimmune, Experimental , Mice, Inbred C57BL , Th1 Cells , Th17 Cells , Animals , Encephalomyelitis, Autoimmune, Experimental/immunology , Encephalomyelitis, Autoimmune, Experimental/drug therapy , Encephalomyelitis, Autoimmune, Experimental/pathology , Mice , CD8-Positive T-Lymphocytes/drug effects , CD8-Positive T-Lymphocytes/immunology , Th1 Cells/drug effects , Th1 Cells/immunology , Th17 Cells/drug effects , Th17 Cells/immunology , Female , Naphthalenes/pharmacology , Naphthalenes/therapeutic use , Cell Proliferation/drug effects
6.
Eur Geriatr Med ; 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38888712

ABSTRACT

PURPOSE: The present study aimed to investigate the influence of preoperative TTE on postoperative short-term mortality, surgery delay, as well as other economic and clinical outcomes in Chinese geriatric hip fracture patients. METHODS: This retrospective, matched-cohort study enrolled geriatric hip fracture patients (≥ 60 years) who underwent surgical interventions at our center between 2015 and 2020. The primary exposure was inpatient preoperative TTE. Demographic and clinical data that were reported as risk factors for postoperative mortality were retrieved from the medical data center as the covariates. The primary clinical outcomes were all-cause mortality at 30 days, 90 days, 180 days, and 1 year. Time from hospital presentation to surgery, length of stay (LOS), inpatient cost, frequency of cardiology consultation and coronary angiography (CAG) were also assessed. The propensity score matching (PSM) was performed in a ratio of 1:1. RESULTS: 447 patients were identified and 216 of them received a preoperative TTE (48.3%). After successfully matching 390 patients (87.2%), patients receiving TTE showed significantly higher 30-day mortality (6.6% vs 2.0%, P = 0.044). But no significant difference was found in 90-day, 180-day, and 365-day mortality as well as the 1-year accumulated survival rate. Receipt of TTE was also associated with significant increases in LOS (13.6 days vs 11.4 days, P = 0.017), waiting time for surgery (5.9 days vs 4.3 days, P < 0.001), and lower proportion of receiving surgery within 48 h (7.2% vs. 26.2%, P < 0.001). According to the multivariable logistic analysis, only ejection fraction (30 days, 90 days), aorta diameter (30 days, 90 days, 180 days, 365 days), left ventricular posterior wall diameter (90 days, 180 days, 365 days), aortic valve velocity (90 days) and mitral valve A-peak (90 days, 180 days) were association with postoperative mortality among the 17 parameters in the TTE reports. Besides, TTE has no influence on the frequency of preoperative cardiology consultation. CONCLUSION: Preoperative TTE does not lead to decreased postoperative mortality but with increased time to surgery and length of stay in Chinese geriatric hip fracture patients. The predictive ability of TTE parameters is limited for postoperative mortality.

7.
Cancer Lett ; 592: 216953, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38729557

ABSTRACT

TGFBR2, a key regulator of the TGFß signaling pathway, plays a crucial role in gastric cancer (GC) metastasis through its endosomal recycling process. Despite its importance, the mechanisms governing this process remain unclear. Here, we identify integrin ß5 (ITGB5) as a critical mediator that promotes TGFBR2 endosomal recycling. Our study reveals elevated expression of ITGB5 in GC, particularly in metastatic cases, correlating with poor patient outcomes. Knockdown of ITGB5 impairs GC cell metastasis both in vitro and in vivo. Mechanistically, ITGB5 facilitates epithelial-mesenchymal transition mediated by TGFß signaling, thereby enhancing GC metastasis. Acting as a scaffold, ITGB5 interacts with TGFBR2 and SNX17, facilitating SNX17-mediated endosomal recycling of TGFBR2 and preventing lysosomal degradation, thereby maintaining its surface distribution on tumor cells. Notably, TGFß signaling directly upregulates ITGB5 expression, establishing a positive feedback loop that exacerbates GC metastasis. Our findings shed light on the role of ITGB5 in promoting GC metastasis through SNX17-mediated endosomal recycling of TGFBR2, providing insights for the development of targeted cancer therapies.


Subject(s)
Endosomes , Epithelial-Mesenchymal Transition , Receptor, Transforming Growth Factor-beta Type II , Signal Transduction , Stomach Neoplasms , Animals , Humans , Mice , Cell Line, Tumor , Endosomes/metabolism , Gene Expression Regulation, Neoplastic , Integrin beta Chains/metabolism , Integrin beta Chains/genetics , Neoplasm Metastasis , Receptor, Transforming Growth Factor-beta Type II/genetics , Receptor, Transforming Growth Factor-beta Type II/metabolism , Sorting Nexins/genetics , Sorting Nexins/metabolism , Stomach Neoplasms/pathology , Stomach Neoplasms/genetics , Stomach Neoplasms/metabolism , Transforming Growth Factor beta/metabolism
8.
J Orthop Surg (Hong Kong) ; 32(2): 10225536241256554, 2024.
Article in English | MEDLINE | ID: mdl-38753310

ABSTRACT

BACKGROUND: Glucocorticoids have been widely used in perioperative period for postoperative pain relief after total knee arthroplasty (TKA). However, the optimal administration protocols of glucocorticoids remain controversial. This study aims to compare the efficacy of glucocorticoids between intravenous and periarticular injection on clinical outcomes. METHODS: A total of 114 patients were randomly assigned to intravenous (IV) group (n = 57) and periarticular injection (PI) group (n = 57). The IV group received 10 mg dexamethasone intravenously and the PI group received periarticular injection of 10 mg dexamethasone during the procedure. The clinical outcomes were assessed using visual analogue scale (VAS), knee society score (KSS), range of motion (ROM), knee swelling, inflammation markers and complications after TKA. RESULTS: The VAS score during walking at 2nd day postoperatively was lower in the PI group compared with the IV group (2.08 ± 1.45 vs 2.73 ± 1.69, p = .039), and there was no significant difference at the other time points of VAS score in two groups. The inflammation markers, knee swelling, knee ROM and KSS score were not statistically different. Vomiting and other complications occurrence were not significantly different between the two groups. CONCLUSIONS: Intraoperative periarticular injection of glucocorticoids has similar analgesic effect compared to intravenous in the postoperative period following TKA and may be even more effective on the second postoperative day. In addition, periarticular injection of glucocorticoids does not impose an excess risk or complication on patients.


Subject(s)
Arthroplasty, Replacement, Knee , Dexamethasone , Glucocorticoids , Pain, Postoperative , Humans , Arthroplasty, Replacement, Knee/adverse effects , Male , Glucocorticoids/administration & dosage , Female , Injections, Intra-Articular , Aged , Prospective Studies , Middle Aged , Pain, Postoperative/drug therapy , Pain, Postoperative/etiology , Pain, Postoperative/prevention & control , Pain, Postoperative/diagnosis , Dexamethasone/administration & dosage , Injections, Intravenous , Pain Measurement , Intraoperative Care/methods , Treatment Outcome , Range of Motion, Articular
9.
Food Chem ; 454: 139759, 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-38805926

ABSTRACT

A ratiometric fluorescence molecularly imprinted probe employing two distinct emission wavelengths of biomass carbon dots was developed for highly selective and visual quantitative detection of tyramine in fermented meat products. The red emission biomass carbon dots were employed as responsive elements, and the blue ones were utilized as the reference elements. The molecularly imprinted polymers were incorporated in the ratiometric sensing to distinguish and adsorb tyramine. With the linear range of 1-60 µg/L, the ratiometric fluorescence molecularly imprinted probe was successfully applied to detect tyramine in real samples with the satisfactory recoveries of 79.74-112.12% and the detect limitation of 1.3 µg/kg, indicating that this probe has great potential applications for the detection of tyramine in real samples. Moreover, smartphone-based fluorescence signal recognition analysis on hand has been developed for the quantitative analysis of tyramine, providing a portable visual optical analysis terminal for rapid on-site determination of tyramine.


Subject(s)
Carbon , Meat Products , Molecular Imprinting , Smartphone , Tyramine , Tyramine/analysis , Carbon/chemistry , Meat Products/analysis , Food Contamination/analysis , Quantum Dots/chemistry , Biomass , Fluorescence , Fluorescent Dyes/chemistry , Spectrometry, Fluorescence/methods , Animals
11.
Exp Cell Res ; 437(2): 114009, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38537745

ABSTRACT

Osteoarthritis (OA) is a degenerative disease that affects millions of individuals worldwide. Despite its prevalence, the exact causes and mechanisms behind OA are still not fully understood, resulting in a lack of effective treatments to slow down or halt disease progression. Recent research has discovered that extracellular vesicles (EVs) present in the circulation of young mice have a remarkable ability to activate musculoskeletal stem cells in elderly mice. Conversely, EVs derived from elderly mice do not exhibit the same potential, indicating that EVs obtained from young individuals may hold promise to activate aging cells in degenerative tissue. However, it remains unknown whether EVs derived from young individuals can also address cartilage degeneration caused by aging. In this study, we first evaluated EVs derived from young human plasma (YEVs) and EVs derived from old human plasma (OEVs) in an in vitro experiment using chondrocytes. The results revealed that YEVs effectively stimulated chondrocyte proliferation and migration, while OEVs from old plasma did not exhibit a similar effect. Given that OA represents a more complex inflammatory microenvironment, we further determine whether the benefits of YEVs on chondrocytes can be maintained in this context. Our findings indicate that YEVs have the ability to positively regulate chondrocyte function and protect them against apoptosis induced by IL-1ß and TNF-α in an in vitro OA model. Furthermore, we discovered that lyophilized EVs could be stored under mild conditions without any alterations in their physical characteristics. Considering the exceptional therapeutic effects and the wide availability of EVs from young plasma, they hold significant promise as a potential approach to activate chondrocytes and promote cartilage regeneration in early-stage OA.


Subject(s)
Extracellular Vesicles , Osteoarthritis , Humans , Mice , Animals , Chondrocytes , Tumor Necrosis Factor-alpha/pharmacology , Cartilage , Interleukin-1beta/pharmacology
12.
RSC Adv ; 13(50): 34958-34971, 2023 Nov 30.
Article in English | MEDLINE | ID: mdl-38046634

ABSTRACT

Articular cartilage is a smooth and elastic connective tissue playing load-bearing and lubricating roles in the human body. Normal articular cartilage comprises no blood vessels, lymphatic vessels, nerves, or undifferentiated cells, so damage self-repair is very unlikely. The injuries of articular cartilage are often accompanied by damage to the subchondral bone. The subchondral bone mainly provides mechanical support for the joint, and the successful repair of articular cartilage depends on the ability of the subchondral bone to provide a suitable environment. Currently, conventional repair treatments for articular cartilage and subchondral bone defects can hardly achieve good results due to the poor self-repairing ability of the cartilage Here, we propose a bioactive injectable double-layer hydrogel to repair articular cartilage and subchondral bone. The hydrogel scaffold mimics the multilayer structure of articular cartilage and subchondral bone. Agarose was used as a common base material for the double-layer hydrogel scaffold, in which a sodium alginate (SA)/agarose layer was used for the repair of artificially produced subchondral bone defects, while a decellularized extracellular matrix (dECM)/agarose layer was used for the repair of articular cartilage defects. The double-layer hydrogel scaffold is injectable, easy to use, and can fill in the damaged area. The hydrogel scaffold is also anisotropic both chemically and structurally. Animal experiments showed that the surface of the new cartilage tissue in the double-layer hydrogel scaffold group was closest to normal articular cartilage, with a structure similar to that of hyaline cartilage and a preliminary calcified layer. Moreover, the new subchondral bone in this group exhibited many regular bone trabeculae, and the new cartilage and subchondral bone were mechanically bound without mutual intrusion and tightly integrated with the surrounding tissue. The continuous double-layer hydrogel scaffold prepared in this study mimics the multilayer structure of articular cartilage and subchondral bone and promotes the functional repair of articular cartilage and subchondral bone, favoring close integration between the newborn tissue and the original tissue.

13.
Front Cell Infect Microbiol ; 13: 1275086, 2023.
Article in English | MEDLINE | ID: mdl-37854857

ABSTRACT

Joint arthroplasty is an option for end-stage septic arthritis due to joint infection after effective control of infection. However, complications such as osteolysis and aseptic loosening can arise afterwards due to wear and tear caused by high joint activity after surgery, necessitating joint revision. Some studies on tissue pathology after prosthesis implantation have identified various cell populations involved in the process. However, these studies have often overlooked the complexity of the altered periprosthetic microenvironment, especially the role of nano wear particles in the etiology of osteolysis and aseptic loosening. To address this gap, we propose the concept of the "prosthetic microenvironment". In this perspective, we first summarize the histological changes in the periprosthetic tissue from prosthetic implantation to aseptic loosening, then analyze the cellular components in the periprosthetic microenvironment post prosthetic implantation. We further elucidate the interactions among cells within periprosthetic tissues, and display the impact of wear particles on the disturbed periprosthetic microenvironments. Moreover, we explore the origins of disease states arising from imbalances in the homeostasis of the periprosthetic microenvironment. The aim of this review is to summarize the role of relevant factors in the microenvironment of the periprosthetic tissues, in an attempt to contribute to the development of innovative treatments to manage this common complication of joint replacement surgery.


Subject(s)
Osteolysis , Humans , Osteolysis/etiology , Prosthesis Failure , Arthroplasty/adverse effects
14.
Nanomaterials (Basel) ; 13(19)2023 Oct 08.
Article in English | MEDLINE | ID: mdl-37836367

ABSTRACT

Ultrathin broadband absorbers with high efficiency, wide angular tolerance, and low fabrication cost are in demand for various applications. Here, we present an angle-insensitive ultrathin (<150 nm) broadband absorber with an average 96.88% (experiment) absorptivity in the whole visible range by utilizing a simple dielectric-semiconductor-lossy metal triple-layer film structure. The excellent broadband absorption performance of the device results from the combined action of the enhanced absorptions in the semiconductor and lossy metal layers exploiting strong interference effects and can be maintained over a wide viewing angle up to ±60°. Benefiting from the lossy metal providing additional absorption, our design reduces the requirement for the semiconductor's material dispersion and has great flexibility in the material selection of the metal layer. Additionally, the lithography-free nature of the proposed broadband visible absorber provides a high-throughput fabrication convenience, thus holding great potential for its large-area applications in various fields.

15.
Bone ; 177: 116922, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37775069

ABSTRACT

PURPOSE: To investigate the utility of serum C-terminal cross-linking telopeptides (ß-CTX) and procollagen type I N propeptide (PINP) for predicting one-year mortality and walking ability in Chinese geriatric hip fracture patients who underwent surgical interventions. METHOD: Elderly patients (≥ 60 years) who underwent surgical interventions for unilateral low-energy hip fracture from 2015 to 2020 in our center were included. Demographic data was retrospectively retrieved from the electronic medical database. The PINP and ß-CTX concentrations were measured before the surgery. The patients were divided into two groups according to the outcome of mortality and walking ability after hip surgery, respectively. ß-CTX and PINP were divided into four grades based on quartiles [Quartile(Q)1-4] for further analysis. All the variables with p < 0.1 in univariable analysis were included in a multivariable model. RESULTS: In univariable analysis, the levels of serum ß-CTX (p = 0.007) and PINP (p = 0.025) was associated with one-year mortality, while the association between levels of serum ß-CTX (p = 0.072) or PINP (p = 0.055) with one-year disability was marginally significant. After adjustment for confounders, the relative risk [OR (95 % CI), Q4 v sQ1, p-value] of one-year mortality and one-year disability were 7.28 (2.08-29.78, p = 0.003) and 3.97 (1.44-11.69, p = 0.009) for ß-CTX and 5.87 (1.70-23.80, p = 0.008) and 3.48 (1.30-9.93, p = 0.016) for PINP, respectively. The coefficient of determination, AUC and bias-corrected C-index of predictive models based on previously reported predictors were significantly improved after integrating ß-CTX or PINP. CONCLUSION: Higher serum ß-CTX and PINP are independently associated with an increased risk of one-year mortality and disability in patients with hip fractures. The application of BTMs improves the performance of currently available predictive models.

16.
J Orthop Surg Res ; 18(1): 560, 2023 Aug 02.
Article in English | MEDLINE | ID: mdl-37533122

ABSTRACT

INTRODUCTION: Accumulated clinical trials had been focused on stem cell therapy in combination of core decompression (CD) in the treatment of avascular necrosis of the femoral head (ANFH). Nonetheless, the results were inconclusive. Here, we performed a systematic review and meta-analysis of previous randomized controlled trials (RCTs) and retrospective studies to assess whether combined stem cell augmentation with CD improved the outcomes of ANFH compared with CD alone. METHODS: The current study included 11 RCTs and 7 retrospective studies reporting the clinical outcomes of a total of 916 patients and 1257 hips. 557 and 700 hips received CD and CD plus stem cell therapy, respectively. To compare CD with CD plus stem cell therapy, we examined the clinical evaluating scores, the occurrence of the femoral head, radiologic progression and conversion to total hip arthroplasty (THA). RESULTS: Only 10 studies reported significantly greater improvement in hip functions while combining stem cell procedure with CD. The pooled results in subgroup analysis indicated that stem cell group had a lower collapse rate on a mid-term basis (P = 0.001), when combined with mechanical support (P < 0.00001), and with extracted stem cells (P = 0.0002). Likewise, stem cell group had a lower radiographic progression rate at 2- to 5-year follow-up [P = 0.003], when combined with structural grafting (P < 0.00001), and with extracted stem cells (P = 0.004). Stem cell therapy resulted in an overall lower THA conversion rate (P < 0.0001) except that at a follow-up longer than 5 years. CONCLUSION: Stem cell therapy combined with core decompression was more effective in preventing collapse, radiographic progression and conversion to THA. Trial Registration The current protocol has been registered in PROSPERO with the registration number: CRD42023417248.


Subject(s)
Femur Head Necrosis , Humans , Treatment Outcome , Femur Head Necrosis/diagnostic imaging , Femur Head Necrosis/surgery , Decompression, Surgical/methods , Stem Cell Transplantation , Femur Head/diagnostic imaging , Femur Head/surgery
17.
Clin Interv Aging ; 18: 263-272, 2023.
Article in English | MEDLINE | ID: mdl-36843634

ABSTRACT

Background: Vitamin D deficiency is a common comorbidity in geriatric hip fracture patients. However, there is still an ongoing debate regarding the influence of preoperative Vitamin D status on postoperative mortality in hip fracture patients. Methods: Elderly patients (≥60 years) who underwent surgical interventions for unilateral hip fracture from 2015 to 2020 in our center were included. We retrospectively retrieved the demographic data from the electronic medical database. Preoperative serum total 25-hydroxy-Vitamin D was set as the independent variable and patients were classified as the Vitamin D deficiency (<20ng/mL) and the control groups consequently. Clinical outcomes include all-cause mortality, walking ability, and major postoperative complications in the first postoperative year. Propensity score matching (PSM) was performed in a ratio of 1:1 in the two groups for further comparison. Results: A total of 210 patients were included and 121 patients (57.6%) were diagnosed with Vitamin D deficiency. Patients in the Vitamin D deficiency group were much older and therefore preferred peripheral nerve block, and had significantly higher proportions of females, preoperative dementia, higher ASA grade, and lower baseline serum albumin level. Overall, 79 patients were identified in the Vitamin D deficiency and control groups after PSM, respectively. Patients diagnosed with Vitamin D deficiency showed a significantly higher one-year mortality (21.5% vs 6.3%, P=0.011) and a much lower one-year independent walking rate (67.1% vs.84.8%, P=0.016) after the matching. Regarding the dataset before PSM and after PSM, the AUC for serum Vitamin D for predicting one-year mortality was 0.656 (P=0.006) and 0.695 (P=0.002), respectively. Conclusion: Our retrospective PSM-design study provides new evidence that Vitamin D deficiency was associated with a significantly higher mortality and poor walking ability in the first year after surgical intervention based on southern Chinese populations.


Subject(s)
Hip Fractures , Vitamin D Deficiency , Female , Humans , Aged , Retrospective Studies , Propensity Score , East Asian People , Hip Fractures/surgery , Vitamin D Deficiency/complications , Vitamin D
18.
Cell Death Differ ; 30(3): 673-686, 2023 03.
Article in English | MEDLINE | ID: mdl-36198833

ABSTRACT

Heat shock protein 90ß (Hsp90ß, encoded by Hsp90ab1 gene) is the most abundant proteins in the cells and contributes to variety of biological processes including metabolism, cell growth and neural functions. However, genetic evidences showing Hsp90ß in vivo functions using tissue specific knockout mice are still lacking. Here, we showed that Hsp90ß exerted paralogue-specific role in osteoclastogenesis. Using myeloid-specific Hsp90ab1 knockout mice, we provided the first genetic evidence showing the in vivo function of Hsp90ß. Hsp90ß binds to Ikkß and reduces its ubiquitylation and proteasomal degradation, thus leading to activated NF-κB signaling. Meanwhile, Hsp90ß increases cholesterol biosynthesis by activating Srebp2. Both pathways promote osteoclastogenic genes expression. Genetic deletion of Hsp90ab1 in osteoclast or pharmacological inhibition of Hsp90ß alleviates bone loss in ovariectomy-induced mice. Therefore, Hsp90ß is a promising druggable target for the treatment of osteoporosis.


Subject(s)
NF-kappa B , Osteogenesis , Animals , Female , Mice , Cholesterol/metabolism , Mice, Inbred C57BL , NF-kappa B/metabolism , Osteoclasts/metabolism , Osteogenesis/genetics , RANK Ligand/metabolism , Signal Transduction
19.
Cartilage ; 14(2): 144-151, 2023 06.
Article in English | MEDLINE | ID: mdl-36541677

ABSTRACT

OBJECTIVE: The current study aims to investigate the factors that could predict response to intra-articular corticosteroid injection (IACI) in patients with knee osteoarthritis (KOA). METHODS: Data of participants were retrieved from the Osteoarthritis Initiative database. Participants with at least one IACI treatment on single or bilateral knees within the first 5 years of follow-up were retrospectively included. Demographic data, clinical and radiographic variables were collected at both baseline and the first follow-up after IACI treatment. Positive response to IACI treatment was defined as >20% reduction of Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC) pain score from V0 to V1. All the variables with P < 0.2 after the comparison between the response and non-response groups were included in a multivariable logistic regression model to identify independent response predictive patient-specific valuables. Receiver operating characteristic curves were performed to establish the cutoff values of independent predictors. RESULTS: The current study included a total of 385 participants (473 knees), with 155 and 318 knees classified into the response group and non-response group, respectively. Those with satisfied responses to IACI treatment had significantly higher WOMAC pain score (P < 0.001), disability score (P = 0.002), and stiffness score (P = 0.015) at the baseline. Baseline WOMAC pain score showed significant association with positive response to IACI treatment in multivariate logistic analysis and the best cutoff value was 5 points. The rate of analgesics utilization was lower (P = 0.014) in the response group than the non-response group after the IACI treatment. CONCLUSION: KOA patients with a baseline WOMAC pain score ≥5 are more likely to benefit from IACI treatment.


Subject(s)
Osteoarthritis, Knee , Humans , Osteoarthritis, Knee/complications , Osteoarthritis, Knee/drug therapy , Retrospective Studies , Treatment Outcome , Pain/drug therapy , Steroids
20.
RSC Adv ; 12(43): 28254-28263, 2022 Sep 28.
Article in English | MEDLINE | ID: mdl-36320226

ABSTRACT

Controlled fabrication of anisotropic materials has become a hotspot in materials science, particularly biomaterials, since the next generation of tissue engineering is based on the application of heterogeneous structures that can simulate the original biological complexity of the body. The current fabrication method of producing anisotropic materials involves expensive and highly specialized equipment, and not every conventional method can be applied to preparing anisotropic materials for corresponding tissue engineering. Anisotropic materials can be easily applied to a problem in tissue engineering: cartilage injury repairing. The articular cartilage consists of four spatially distinct regions: superficial, transitional, deep, and calcified. Each region has a specific extracellular matrix composition, mechanical properties, and cellular organization; this calls for the application of an anisotropic hydrogel. Controlled diffusion, under the assistance of buoyancy, has been considered a generalized method to prepare materials using a gradient. The diffusion of two solutions can be controlled through the difference in their densities. In addition to providing anisotropy, this method realizes the in situ formation of an anisotropic hydrogel, and simplifies the preparation process, freeing it from the need for expensive equipment such as 3D printing and microfluidics. Herein, an anisotropic hydrogel based on a decellularized extracellular matrix is fabricated and characterized. The as-prepared scaffold possessed specific chemical composition, physical properties, and physiological factor gradient. In vitro experiments ensured its biocompatibility and biological effectiveness; further in vivo experiments confirmed its application in the effective regeneration of cartilage injury.

SELECTION OF CITATIONS
SEARCH DETAIL