Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters








Database
Language
Publication year range
1.
Nat Genet ; 51(5): 885-895, 2019 05.
Article in English | MEDLINE | ID: mdl-30962619

ABSTRACT

The domestication of wild emmer wheat led to the selection of modern durum wheat, grown mainly for pasta production. We describe the 10.45 gigabase (Gb) assembly of the genome of durum wheat cultivar Svevo. The assembly enabled genome-wide genetic diversity analyses revealing the changes imposed by thousands of years of empirical selection and breeding. Regions exhibiting strong signatures of genetic divergence associated with domestication and breeding were widespread in the genome with several major diversity losses in the pericentromeric regions. A locus on chromosome 5B carries a gene encoding a metal transporter (TdHMA3-B1) with a non-functional variant causing high accumulation of cadmium in grain. The high-cadmium allele, widespread among durum cultivars but undetected in wild emmer accessions, increased in frequency from domesticated emmer to modern durum wheat. The rapid cloning of TdHMA3-B1 rescues a wild beneficial allele and demonstrates the practical use of the Svevo genome for wheat improvement.


Subject(s)
Triticum/genetics , Adenosine Triphosphatases/genetics , Adenosine Triphosphatases/metabolism , Cadmium/metabolism , Chromosomes, Plant/genetics , Domestication , Genetic Variation , Genome, Plant , Phylogeny , Plant Breeding , Plant Proteins/genetics , Plant Proteins/metabolism , Polymorphism, Single Nucleotide , Quantitative Trait Loci , Selection, Genetic , Synteny , Tetraploidy , Triticum/classification , Triticum/metabolism
2.
Science ; 357(6346): 93-97, 2017 07 07.
Article in English | MEDLINE | ID: mdl-28684525

ABSTRACT

Wheat (Triticum spp.) is one of the founder crops that likely drove the Neolithic transition to sedentary agrarian societies in the Fertile Crescent more than 10,000 years ago. Identifying genetic modifications underlying wheat's domestication requires knowledge about the genome of its allo-tetraploid progenitor, wild emmer (T. turgidum ssp. dicoccoides). We report a 10.1-gigabase assembly of the 14 chromosomes of wild tetraploid wheat, as well as analyses of gene content, genome architecture, and genetic diversity. With this fully assembled polyploid wheat genome, we identified the causal mutations in Brittle Rachis 1 (TtBtr1) genes controlling shattering, a key domestication trait. A study of genomic diversity among wild and domesticated accessions revealed genomic regions bearing the signature of selection under domestication. This reference assembly will serve as a resource for accelerating the genome-assisted improvement of modern wheat varieties.


Subject(s)
Crops, Agricultural/genetics , Domestication , Genes, Plant , Tetraploidy , Triticum/genetics , Biological Evolution , Mutation , Plant Breeding , Synteny
SELECTION OF CITATIONS
SEARCH DETAIL