Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters








Database
Type of study
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-38301034

ABSTRACT

Importance: The prompt effective treatment of acute agitation among patients with schizophrenia or bipolar disorder can alleviate distressing symptoms for the patient and decrease the risk of escalation to aggression and the potential for serious harm to the patient, health care providers, and others.Observations: A commonly used approach for the management of acute agitation has been the intramuscular administration of antipsychotic medications and/or benzodiazepines. However, US Food and Drug Administration-approved treatments with alternative routes of delivery now include inhaled loxapine powder and, more recently, dexmedetomidine sublingual film. Two formulations of intranasal olanzapine for acute agitation are in development.Conclusions and Relevance: Intranasal formulations offer the potential for favorable pharmacokinetics and onset of action combined with ease of delivery obviating the need for injections and are thus consistent with patient-centered factors such as preference and self-administration. In this review, alternative methods of medication delivery are discussed, with an emphasis on the potential for intranasal administration to treat acute agitation in adult patients with schizophrenia or bipolar disorder.Prim Care Companion CNS Disord 2024;26(1):23nr03596. Author affiliations are listed at the end of this article.


Subject(s)
Antipsychotic Agents , Bipolar Disorder , Loxapine , Schizophrenia , Adult , Humans , Schizophrenia/complications , Schizophrenia/drug therapy , Antipsychotic Agents/therapeutic use , Bipolar Disorder/complications , Bipolar Disorder/drug therapy , Psychomotor Agitation/drug therapy , Psychomotor Agitation/etiology , Loxapine/adverse effects
2.
Pharmaceutics ; 15(8)2023 Aug 10.
Article in English | MEDLINE | ID: mdl-37631332

ABSTRACT

Intranasal delivery of drugs offers several potential benefits related to ease of delivery, rapid onset, and patient experience, which may be of particular relevance to patients with central nervous system (CNS) conditions who experience acute events. Intranasal formulations must be adapted to address anatomical and physiological characteristics of the nasal cavity, including restricted dose volume, limited surface area, and barriers to mucosal absorption, in addition to constraints on the absorption window due to mucociliary clearance. Development of an effective formulation may utilize strategies including the addition of excipients to address the physicochemical properties of the drug within the constraints of nasal delivery. Dodecyl maltoside (DDM) and tetradecyl maltoside are alkylsaccharide permeation enhancers with well-established safety profiles, and studies have demonstrated transiently improved absorption and favorable bioavailability of several compounds in preclinical and clinical trials. Dodecyl maltoside is a component of three US Food and Drug Administration (FDA)-approved intranasal medications: diazepam for the treatment of seizure cluster in epilepsy, nalmefene for the treatment of acute opioid overdose, and sumatriptan for the treatment of migraine. Another drug product with DDM as an excipient is currently under FDA review, and numerous investigational drugs are in early-stage development. Here, we review factors related to the delivery of intranasal drugs and the role of alkylsaccharide permeation enhancers in the context of approved and future intranasal formulations of drugs for CNS conditions.

3.
J Pharm Sci ; 92(3): 485-93, 2003 Mar.
Article in English | MEDLINE | ID: mdl-12587110

ABSTRACT

Stability testing of morphine sulfate formulated with nonpareil sugar seeds (consisting of sucrose and starch) and fumaric acid revealed the formation of the three impurities 5-(hydroxymethyl)-2-furfural, 10-hydroxymorphine and 10-oxomorphine. 5-(Hydroxymethyl)-2-furfural was isolated via semipreparative HPLC utilizing volatile mobile phase constituents and was identified by analysis of its HRMS and NMR spectra. 10-Hydroxymorphine and 10-oxomorphine were obtained via semipreparative HPLC and subsequent removal of ion-pair reagents using an anion exchange resin, or by solid phase extraction, and identified by spectroscopic analysis followed by comparison with authentic materials. 5-(Hydroxymethyl)-2-furfural is a degradation product of hexose sugars, and its formation in the presence of morphine sulfate formulated with fumaric acid suggests that caution should be exercised when including nonpareil seeds in formulations that contain acidic drug salts and/or acid excipients. The preliminary results of tests on the interaction of acidic salts of some other drugs with nonpareil seeds are presented.


Subject(s)
Drug Contamination , Furaldehyde/analogs & derivatives , Furaldehyde/analysis , Morphine Derivatives/analysis , Morphine/analysis , Chemistry, Pharmaceutical , Furaldehyde/chemistry , Morphine/chemistry , Morphine Derivatives/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL