Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters








Database
Language
Publication year range
1.
Nanotechnology ; 29(41): 415302, 2018 Oct 12.
Article in English | MEDLINE | ID: mdl-30027889

ABSTRACT

This paper describes a new, low-cost, top-down fabrication process, which makes it possible to define nanowire field effect transistor arrays with different numbers of nanowires simultaneously and systematically comparing their electrical performance. The main feature of this process is a developed bilayer photoresist pattern with a retrograde profile, which enables the modification of the nanowire in width, length, height and the number of transistor channels. The approach is compatible with low-cost manufacture without electron beam lithography, and benefits from process temperatures below 190 °C. Process reliability has been investigated by scanning electron microscopy, transmission electron microscopy and atomic force microscopy. Electrical measurements demonstrate enhancement mode transistors, which show a scalable correlation between the number of nanowires and the electrical characteristics. Devices with 100 nanowires exhibit the best performance with a high field effect mobility of 11.0 cm2 Vs-1, on/off current ratio of 3.97 × 107 and subthreshold swing of 0.66 V dec-1.

2.
Nat Chem ; 10(3): 355-362, 2018 03.
Article in English | MEDLINE | ID: mdl-29461525

ABSTRACT

The entatic state denotes a distorted coordination geometry of a complex from its typical arrangement that generates an improvement to its function. The entatic-state principle has been observed to apply to copper electron-transfer proteins and it results in a lowering of the reorganization energy of the electron-transfer process. It is thus crucial for a multitude of biochemical processes, but its importance to photoactive complexes is unexplored. Here we study a copper complex-with a specifically designed constraining ligand geometry-that exhibits metal-to-ligand charge-transfer state lifetimes that are very short. The guanidine-quinoline ligand used here acts on the bis(chelated) copper(I) centre, allowing only small structural changes after photoexcitation that result in very fast structural dynamics. The data were collected using a multimethod approach that featured time-resolved ultraviolet-visible, infrared and X-ray absorption and optical emission spectroscopy. Through supporting density functional calculations, we deliver a detailed picture of the structural dynamics in the picosecond-to-nanosecond time range.


Subject(s)
Coordination Complexes/chemistry , Copper/chemistry , Photochemical Processes , Density Functional Theory , Electron Transport , Molecular Structure
SELECTION OF CITATIONS
SEARCH DETAIL