Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters








Database
Language
Publication year range
1.
Sci Total Environ ; 904: 166732, 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-37659536

ABSTRACT

Removal of sulfate from the injection seawater (desulfation) in hydrocarbon reservoirs is a Modified Salinity Water (MSW) flooding method that mitigates microbial reservoir souring, improves oil recovery, and enables produced-water re-injection (PWRI). Aside from the Improved Oil Recovery (IOR) effect, desulfation results in a cleaner production of oil through enabling PWRI and reducing the environmental impacts associated with reservoir souring and nitrate treatment. However, whether desulfation is still beneficial for mature fields, after years of the injection of untreated seawater, is a valid common concern. In such cases, sulfate concentration inside the reservoir has already increased due to years of untreated seawater injection. The high sulfate concentration inside the subsurface reservoir before desulfated water flooding may render desulfation pointless. The present study investigates the potential benefits of desulfation after around 20 years of untreated seawater injection in a sector of an oil field in the Danish North Sea. The results show that depending on the cessation of production point in time and the efficiency of residual oil saturation reduction of MSW flooding, desulfation results in a significant increase in oil production. Even if improving oil recovery is no longer a priority, modification of injected seawater would still help reduce the amount of water required to support a given oil production rate. Moreover, desulfation is considerably more effective than nitrate treatment in mitigating microbial reservoir souring. Furthermore, the possibility of scale formation is decreased considerably due to desulfation, which further encourages PWRI.

2.
Adv Ther (Weinh) ; 4(3)2021 Mar.
Article in English | MEDLINE | ID: mdl-33869738

ABSTRACT

While systemic immuno-oncology therapies have shown remarkable success, only a limited subset of patients benefit from them. Our Click Activated Protodrugs Against Cancer (CAPAC™) Platform is a click chemistry-based approach that activates cancer drugs at a specific tumor with minimal systemic toxicity. CAPAC Platform is agnostic to tumor characteristics that can vary across patients and hence applicable to several types of tumors. We describe the benefits of SQ3370 (lead candidate of CAPAC) to achieve systemic anti-tumor responses in mice bearing two tumors. SQ3370 consists of a biopolymer, injected in a single lesion, followed by systemic doses of an attenuated protodrug™ of doxorubicin (Dox). SQ3370 was well-tolerated at 5.9-times the maximum dose of conventional Dox, increased survival by 63% and induced a systemic anti-tumor response against injected and non-injected lesions. The sustained anti-tumor response also correlated with immune activation measured at both lesions. SQ3370 could potentially benefit patients with micro-metastatic lesions.

3.
Remote Sens Environ ; 193: 257-273, 2017 May.
Article in English | MEDLINE | ID: mdl-29743730

ABSTRACT

Two satellites are currently monitoring surface soil moisture (SM) using L-band observations: SMOS (Soil Moisture and Ocean Salinity), a joint ESA (European Space Agency), CNES (Centre national d'études spatiales), and CDTI (the Spanish government agency with responsibility for space) satellite launched on November 2, 2009 and SMAP (Soil Moisture Active Passive), a National Aeronautics and Space Administration (NASA) satellite successfully launched in January 2015. In this study, we used a multilinear regression approach to retrieve SM from SMAP data to create a global dataset of SM, which is consistent with SM data retrieved from SMOS. This was achieved by calibrating coefficients of the regression model using the CATDS (Centre Aval de Traitement des Données) SMOS Level 3 SM and the horizontally and vertically polarized brightness temperatures (TB) at 40° incidence angle, over the 2013 - 2014 period. Next, this model was applied to SMAP L3 TB data from Apr 2015 to Jul 2016. The retrieved SM from SMAP (referred to here as SMAP_Reg) was compared to: (i) the operational SMAP L3 SM (SMAP_SCA), retrieved using the baseline Single Channel retrieval Algorithm (SCA); and (ii) the operational SMOSL3 SM, derived from the multiangular inversion of the L-MEB model (L-MEB algorithm) (SMOSL3). This inter-comparison was made against in situ soil moisture measurements from more than 400 sites spread over the globe, which are used here as a reference soil moisture dataset. The in situ observations were obtained from the International Soil Moisture Network (ISMN; https://ismn.geo.tuwien.ac.at/) in North of America (PBO_H2O, SCAN, SNOTEL, iRON, and USCRN), in Australia (Oznet), Africa (DAHRA), and in Europe (REMEDHUS, SMOSMANIA, FMI, and RSMN). The agreement was analyzed in terms of four classical statistical criteria: Root Mean Squared Error (RMSE), Bias, Unbiased RMSE (UnbRMSE), and correlation coefficient (R). Results of the comparison of these various products with in situ observations show that the performance of both SMAP products i.e. SMAP_SCA and SMAP_Reg is similar and marginally better to that of the SMOSL3 product particularly over the PBO_H2O, SCAN, and USCRN sites. However, SMOSL3 SM was closer to the in situ observations over the DAHRA and Oznet sites. We found that the correlation between all three datasets and in situ measurements is best (R > 0.80) over the Oznet sites and worst (R = 0.58) over the SNOTEL sites for SMAP_SCA and over the DAHRA and SMOSMANIA sites (R= 0.51 and R= 0.45 for SMAP_Reg and SMOSL3, respectively). The Bias values showed that all products are generally dry, except over RSMN, DAHRA, and Oznet (and FMI for SMAP_SCA). Finally, our analysis provided interesting insights that can be useful to improve the consistency between SMAP and SMOS datasets.

4.
Ann Med Health Sci Res ; 5(6): 385-91, 2015.
Article in English | MEDLINE | ID: mdl-27057375

ABSTRACT

BACKGROUND: The socioeconomic conditions have made more job opportunities available to women. This has created interest to conduct studies on the effect of working lifestyle on pregnancy outcomes. AIM: This study was conducted with the aim to assess the relationship between mothers' working status as a social determinant and the incidence of low birth weight (LBW) of the newborn. SUBJECTS AND METHODS: This case-control study was conducted on 500 women with normal weight infants (control group) and 250 women with LBW infants (case group) in selected hospitals in Tehran. Data were collected using a researcher-made questionnaire, designed to assess the effect of mothers' prenatal lifestyle, as a social determinant, on LBW of the newborn. A section of the questionnaire involved assessment of mother's working condition in terms of the work environment, activities, and job satisfaction. Data were analyzed using Chi-square and logistic regression tests. RESULTS: LBW among employed mothers was 5 times more likely than unemployed ones (odds ratio = 5.35, P < 0.001). Unfavorable work conditions such as humid environment, contact with detergents, and being in one standing or sitting position for long hours were significantly associated with LBW (P < 0.001). CONCLUSION: The present study showed that unfavorable work conditions were associated with LBW; therefore, they need special attention.

5.
Ann N Y Acad Sci ; 934: 393-400, 2001 May.
Article in English | MEDLINE | ID: mdl-11460653

ABSTRACT

Film cooling is currently used in gas turbine hot sections, such as the combustor wall and the turbine blades, to prevent those sections from failing at elevated temperatures. In the single hole film cooling method, coolant air is injected from a hole into the mainstream and thus the flow is naturally three dimensional. In this paper, the Navier-Stokes and the energy equations are solved on a flat plate by the Finite Element Method (FEM) using brick elements. Algebraic equations are obtained by use of the Petrov-Galerkin method. The pressure term is removed from the momentum equations, by employing the Penalty method. The governing equations are transient and the flow is incompressible and turbulent. The model of turbulence in the near wall region is the wall function method, and in the fully turbulent region is the k-epsilon model. The system of the algebraic equations are solved by the Frontal method. The coolant injection angle and the blowing rate are among the parameters which are studied. In order to examine the present computer code, the results are compared with the Blasius (exact) solution and also with the empirical 1/7th power-law and good agreement is shown. Also, the optimum cooling performance is shown to be at 35 degree angle of coolant injection and the optimum blowing rate is 0.5. The film cooling effectiveness data, at the optimum conditions, is directly compared with the experimental results of Goldstein et al. and good agreement is demonstrated.

SELECTION OF CITATIONS
SEARCH DETAIL