Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Leukemia ; 36(4): 1078-1087, 2022 04.
Article in English | MEDLINE | ID: mdl-35027656

ABSTRACT

Interrogation of cell-free DNA (cfDNA) represents an emerging approach to non-invasively estimate disease burden in multiple myeloma (MM). Here, we examined low-pass whole genome sequencing (LPWGS) of cfDNA for its predictive value in relapsed/ refractory MM (RRMM). We observed that cfDNA positivity, defined as ≥10% tumor fraction by LPWGS, was associated with significantly shorter progression-free survival (PFS) in an exploratory test cohort of 16 patients who were actively treated on diverse regimens. We prospectively determined the predictive value of cfDNA in 86 samples from 45 RRMM patients treated with elotuzumab, pomalidomide, bortezomib, and dexamethasone in a phase II clinical trial (NCT02718833). PFS in patients with tumor-positive and -negative cfDNA after two cycles of treatment was 1.6 and 17.6 months, respectively (HR 7.6, P < 0.0001). Multivariate hazard modelling confirmed cfDNA as independent risk factor (HR 96.6, P = 6.92e-05). While correlating with serum-free light chains and bone marrow, cfDNA additionally discriminated patients with poor PFS among those with the same response by IMWG criteria. In summary, detectability of MM-derived cfDNA, as a measure of substantial tumor burden with therapy, independently predicts poor PFS and may provide refinement for standard-of-care response parameters to identify patients with poor response to treatment earlier than is currently feasible.


Subject(s)
Cell-Free Nucleic Acids , Multiple Myeloma , Cell-Free Nucleic Acids/genetics , Humans , Multiple Myeloma/diagnosis , Multiple Myeloma/drug therapy , Multiple Myeloma/genetics , Treatment Failure
2.
Nat Cell Biol ; 23(11): 1199-1211, 2021 11.
Article in English | MEDLINE | ID: mdl-34675390

ABSTRACT

While there is extensive evidence for genetic variation as a basis for treatment resistance, other sources of variation result from cellular plasticity. Using multiple myeloma as an example of an incurable lymphoid malignancy, we show how cancer cells modulate lineage restriction, adapt their enhancer usage and employ cell-intrinsic diversity for survival and treatment escape. By using single-cell transcriptome and chromatin accessibility profiling, we show that distinct transcriptional states co-exist in individual cancer cells and that differential transcriptional regulon usage and enhancer rewiring underlie these alternative transcriptional states. We demonstrate that exposure to standard treatment further promotes transcriptional reprogramming and differential enhancer recruitment while simultaneously reducing developmental potential. Importantly, treatment generates a distinct complement of actionable immunotherapy targets, such as CXCR4, which can be exploited to overcome treatment resistance. Our studies therefore delineate how to transform the cellular plasticity that underlies drug resistance into immuno-oncologic therapeutic opportunities.


Subject(s)
Antineoplastic Agents/pharmacology , Cellular Reprogramming , Drug Resistance, Neoplasm/genetics , Immunotherapy , Multiple Myeloma/drug therapy , Receptors, CXCR4/antagonists & inhibitors , Transcription, Genetic , Aged , Aged, 80 and over , Cell Line, Tumor , Cell Lineage , Cell Plasticity , Female , Gene Expression Regulation, Neoplastic , Gene Regulatory Networks , Humans , Male , Middle Aged , Molecular Targeted Therapy , Multiple Myeloma/genetics , Multiple Myeloma/immunology , Multiple Myeloma/metabolism , Receptors, CXCR4/genetics , Receptors, CXCR4/metabolism , Transcriptome
3.
Cancer ; 126(6): 1264-1273, 2020 03 15.
Article in English | MEDLINE | ID: mdl-31860140

ABSTRACT

BACKGROUND: Outcomes for patients with relapsed/refractory acute myeloid leukemia (R/R AML) remain poor. Novel therapies specifically targeting AML are of high interest. Brentuximab vedotin (BV) is an antibody-drug conjugate that is specific for human CD30. In this phase 1 dose escalation study, the authors evaluated the safety of BV combined with mitoxantrone, etoposide, and cytarabine (MEC) re-induction chemotherapy for patients with CD30-expressing R/R AML. METHODS: Using a standard dose escalation design, the authors evaluated 3 dose levels of BV (0.9 mg/kg, 1.2 mg/kg, and 1.8 mg/kg) administered once on day 1 followed by MEC on days 3 through 7. RESULTS: There were no dose-limiting toxicities noted and the maximum tolerated dose was not reached. The recommended phase 2 dose of BV was determined to be 1.8 mg/kg when combined with MEC. The side effect profile was similar to that expected from MEC chemotherapy alone, with the most common grade ≥3 toxicities being febrile neutropenia, thrombocytopenia, and anemia (toxicities were graded using the National Cancer Institute Common Terminology Criteria for Adverse Events [version 4.0]). Among the 22 patients enrolled on the trial, the composite response rate was 36%, with a composite response rate of 42% noted among those who received the highest dose of BV. The median overall survival was 9.5 months, with a median disease-free survival of 6.8 months observed among responders. Approximately 55% of patients were able to proceed with either allogeneic hematopoietic stem cell transplantation or donor lymphocyte infusion. CONCLUSIONS: The combination of BV with MEC was found to be safe in patients with CD30-expressing R/R AML and warrants further study comparing this combination with the use of MEC alone in this population (ClinicalTrials.gov identifier NCT01830777). LAY SUMMARY: The outcomes for patients with relapsed/refractory acute myeloid leukemia (R/R AML) are exceptionally poor. New and emerging treatment combinations are actively being studied in an effort to improve outcomes. The authors examined the combination of brentuximab vedotin, an antibody product that recognizes a marker called CD30, with mitoxantrone, etoposide, and cytarabine (MEC), a common chemotherapy regimen, in patients with R/R AML that expressed the CD30 marker. The authors found that the combination was safe and well tolerated. Future studies comparing this new combination with the use of MEC alone can help to inform its effectiveness for this patient population.


Subject(s)
Antineoplastic Agents, Immunological/administration & dosage , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Brentuximab Vedotin/administration & dosage , Immunoconjugates/administration & dosage , Induction Chemotherapy/methods , Leukemia, Myeloid, Acute/drug therapy , Adult , Aged , Antineoplastic Agents, Immunological/adverse effects , Brentuximab Vedotin/adverse effects , Cytarabine/administration & dosage , Disease-Free Survival , Drug Administration Schedule , Drug Resistance, Neoplasm , Etoposide/administration & dosage , Female , Humans , Immunoconjugates/adverse effects , Ki-1 Antigen/metabolism , Leukemia, Myeloid, Acute/immunology , Leukemia, Myeloid, Acute/mortality , Male , Maximum Tolerated Dose , Middle Aged , Mitoxantrone/administration & dosage , Recurrence , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL