Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters








Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-25122368

ABSTRACT

The evolution of surface water waves in finite depth under wind forcing is reduced to an antidissipative Korteweg-de Vries-Burgers equation. We exhibit its solitary wave solution. Antidissipation accelerates and increases the amplitude of the solitary wave and leads to blow-up and breaking. Blow-up occurs in finite time for infinitely large asymptotic space so it is a nonlinear, dispersive, and antidissipative equivalent of the linear instability which occurs for infinite time. Due to antidissipation two given arbitrary and adjacent planes of constant phases of the solitary wave acquire different velocities and accelerations inducing breaking. Soliton breaking occurs in finite space in a time prior to the blow-up. We show that the theoretical growth in amplitude and the time of breaking are both testable in an existing experimental facility.


Subject(s)
Models, Theoretical , Motion , Water , Wind , Time Factors
2.
Phys Rev E Stat Nonlin Soft Matter Phys ; 71(2 Pt 2): 026307, 2005 Feb.
Article in English | MEDLINE | ID: mdl-15783419

ABSTRACT

We establish a Green-Nagdhi model equation for capillary-gravity waves in (2+1) dimensions. Through the derivation of an asymptotic equation governing short-wave dynamics, we show that this system possesses (1+1) traveling-wave solutions for almost all the values of the Bond number theta (the special case theta=1/3 is not studied). These waves become singular when their amplitude is larger than a threshold value, related to the velocity of the wave. The limit angle at the crest is then calculated. The stability of a wave train is also studied via a Benjamin-Feir modulational analysis.

3.
Article in English | MEDLINE | ID: mdl-11970044

ABSTRACT

In this paper we study the interplay between short- and long-space scales in the context of conservative dispersive systems. We consider model systems in (1+1) dimensions that admit both long- and short-wavelength solutions in the linear regime. A nonlinear analysis of these systems is constructed, making use of multiscale expansions. We show that the equations governing the lowest order involve only short-wave properties and that the long-wave effects to leading order are determined by a secularity elimination procedure.

SELECTION OF CITATIONS
SEARCH DETAIL