Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters








Database
Language
Publication year range
1.
J Comput Aided Mol Des ; 35(8): 883-900, 2021 08.
Article in English | MEDLINE | ID: mdl-34189637

ABSTRACT

In the field of drug-target interactions prediction, the majority of approaches formulated the problem as a simple binary classification task. These methods used binary drug-target interaction datasets to train their models. The prediction of drug-target interactions is inherently a regression problem and these interactions would be identified according to the binding affinity between drugs and targets. This paper deals the binary drug-target interactions and tries to identify the binary interactions based on the binding strength of a drug and its target. To this end, we propose a semi-supervised transfer learning approach to predict the binding affinity in a continuous spectrum for binary interactions. Due to the lack of training data with continuous binding affinity in the target domain, the proposed method makes use of the information available in other domains (i.e. source domain), via the transfer learning approach. The general framework of our algorithm is based on an objective function, which considers the performance in both source and target domains as well as the unlabeled data in the target domain via a regularization term. To optimize this objective function, we make use of a gradient boosting machine which constructs the final model. To assess the performance of the proposed method, we have used some benchmark datasets with binary interactions for four classes of human proteins. Our algorithm identifies interactions in a more realistic situation. According to the experimental results, our regression model performs better than the state-of-the-art methods in some procedures.


Subject(s)
Algorithms , Drug Interactions , Pharmaceutical Preparations/chemistry , Pharmaceutical Preparations/metabolism , Supervised Machine Learning , Humans
2.
Comput Biol Chem ; 64: 263-270, 2016 Oct.
Article in English | MEDLINE | ID: mdl-27475237

ABSTRACT

Identification of disease genes, using computational methods, is an important issue in biomedical and bioinformatics research. According to observations that diseases with the same or similar phenotype have the same biological characteristics, researchers have tried to identify genes by using machine learning tools. In recent attempts, some semi-supervised learning methods, called positive-unlabeled learning, is used for disease gene identification. In this paper, we present a Perceptron ensemble of graph-based positive-unlabeled learning (PEGPUL) on three types of biological attributes: gene ontologies, protein domains and protein-protein interaction networks. In our method, a reliable set of positive and negative genes are extracted using co-training schema. Then, the similarity graph of genes is built using metric learning by concentrating on multi-rank-walk method to perform inference from labeled genes. At last, a Perceptron ensemble is learned from three weighted classifiers: multilevel support vector machine, k-nearest neighbor and decision tree. The main contributions of this paper are: (i) incorporating the statistical properties of gene data through choosing proper metrics, (ii) statistical evaluation of biological features, and (iii) noise robustness characteristic of PEGPUL via using multilevel schema. In order to assess PEGPUL, we have applied it on 12950 disease genes with 949 positive genes from six class of diseases and 12001 unlabeled genes. Compared with some popular disease gene identification methods, the experimental results show that PEGPUL has reasonable performance.


Subject(s)
Computational Biology , Genetic Association Studies , Computational Biology/trends , Databases, Genetic
3.
IEEE Trans Nanobioscience ; 8(1): 92-9, 2009 Mar.
Article in English | MEDLINE | ID: mdl-19307166

ABSTRACT

In this paper, we have proposed a fuzzy rule-based classifier for assigning amino acid sequences into different superfamilies of proteins. While the most popular methods for protein classification rely on sequence alignment, our approach is alignment-free and so more human readable. It accounts for the distribution of contiguous patterns of n amino acids ( n-grams) in the sequences as features, alike other alignment-independent methods. Our approach, first extracts a plenty of features from a set of training sequences, then selects only some best of them, using a proposed feature ranking method. Thereafter, using these features, a novel steady-state genetic algorithm for extracting fuzzy classification rules from data is used to generate a compact set of interpretable fuzzy rules. The generated rules are simple and human understandable. So, the biologists can utilize them, for classification purposes, or incorporate their expertise to interpret or even modify them. To evaluate the performance of our fuzzy rule-based classifier, we have compared it with the conventional nonfuzzy C4.5 algorithm, beside some other fuzzy classifiers. This comparative study is conducted through classifying the protein sequences of five superfamily classes, downloaded from a public domain database. The obtained results show that the generated fuzzy rules are more interpretable, with acceptable improvement in the classification accuracy.


Subject(s)
Algorithms , Fuzzy Logic , Pattern Recognition, Automated/methods , Proteins/chemistry , Sequence Alignment/methods , Sequence Analysis, Protein/methods , Amino Acid Sequence , Molecular Sequence Data , Sequence Homology, Amino Acid
SELECTION OF CITATIONS
SEARCH DETAIL