Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters








Database
Language
Publication year range
1.
Viruses ; 16(4)2024 03 23.
Article in English | MEDLINE | ID: mdl-38675838

ABSTRACT

Rabbit hemorrhagic disease (RHD) is an acute fatal disease caused by the rabbit hemorrhagic disease virus (RHDV). Since the first outbreaks of type 2 RHDV (RHDV2) in April 2020 in China, the persistence of this virus in the rabbit population has caused substantial economic losses in rabbit husbandry. Previous failures in preventing RHDV2 prompted us to further investigate the immune mechanisms underlying the virus's pathogenicity, particularly concerning the spleen, a vital component of the mononuclear phagocyte system (MPS). For this, a previous RHDV2 isolate, CHN/SC2020, was utilized to challenge naive adult rabbits. Then, the splenic transcriptome was determined by RNA-Seq. This study showed that the infected adult rabbits had 3148 differentially expressed genes (DEGs), which were associated with disease, signal transduction, cellular processes, and cytokine signaling categories. Of these, 100 upregulated DEGs were involved in inflammatory factors such as IL1α, IL-6, and IL-8. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis showed that these DEGs were significantly enriched in the cytokine-cytokine receptor interaction signaling pathway, which may play a vital role in CHN/SC2020 infection. At the same time, proinflammatory cytokines and chemokines were significantly increased in the spleen at the late stages of infection. These findings suggested that RHDV2 (CHN/SC2020) might induce dysregulation of the cytokine network and compromise splenic immunity against viral infection, which expanded our understanding of RHDV2 pathogenicity.


Subject(s)
Caliciviridae Infections , Cytokines , Hemorrhagic Disease Virus, Rabbit , Spleen , Transcriptome , Animals , Hemorrhagic Disease Virus, Rabbit/genetics , Hemorrhagic Disease Virus, Rabbit/immunology , Spleen/virology , Spleen/immunology , Rabbits , Caliciviridae Infections/virology , Caliciviridae Infections/immunology , Caliciviridae Infections/genetics , Cytokines/metabolism , Cytokines/genetics , Gene Expression Profiling , Inflammation/virology , Inflammation/genetics
2.
Front Cell Infect Microbiol ; 13: 1230689, 2023.
Article in English | MEDLINE | ID: mdl-37593762

ABSTRACT

Introduction: Despite long-term integrated control programs for Eimeria stiedai infection in China, hepatic coccidiosis in rabbits persists. Th1, Th2, Th17, Treg, Th9, and Th21 cells are involved in immune responses during pathogen infection. It is unclear whether Th cell subsets are also involved in E. stiedai infection. Their roles in the immunopathology of this infection remain unknown. Therefore, monitoring these T-cell subsets' immune responses during primary infection of E. stiedai at both transcriptional (mRNA) and protein (cytokines) levels is essential. Methods: In experimentally infected New Zealand white rabbits, mRNA expression levels of their transcript-TBX2 (Th1), GATA3 (Th2), RORC (Th17), Foxp3 (Treg), SPI1 (Th9), and BCL6 (Th21)-were evaluated using quantitative real-time polymerase chain reaction (qRT-PCR), whereas Th1 (IFN-g and TNF-a), Th2 (IL4), Th17 (IL17A and IL6), Treg (IL10 and TGF-b1), Th9 (IL9), and Th21 (IL21) cytokines were measured using enzyme-linked immunosorbent assays (ELISAs). Results: We found that levels of TBX2, GATA3, RORC, SPI1, and BCL6 in the livers of infected rabbits were elevated on days 5 and 15 post-infection (PI). The concentrations of their distinctive cytokines IFN-g and TNF-a for Th1, IL4 for Th2, IL17A for Th17, IL9 for Th9, IL21 for Th21, and IL10 for Treg IL10 were also significantly increased on days 5 and 15 PI, respectively (p < 0.05). On day 23 PI, GATA3 with its cytokine IL4, RORC with IL17A, Foxp3 with IL10 and TGF-b1, and SPI1 with IL9 were significantly decreased, but TBX2 with IFN-g and IL6 remained elevated. Discussion: Our findings are the first evidence of Th1/Th2/Treg/Th17/Th9/Th21 changes in E. stiedai-infected rabbits and provide insights into immune regulation mechanisms and possible vaccine development.


Subject(s)
Eimeria , Rabbits , Animals , Interleukin-10 , Interleukin-4 , Interleukin-6 , Interleukin-9 , T-Lymphocytes, Regulatory , Interferon-gamma , Th17 Cells , Cytokines , Immunity , Forkhead Transcription Factors
SELECTION OF CITATIONS
SEARCH DETAIL