Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 289
Filter
1.
MedComm (2020) ; 5(7): e636, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38962427

ABSTRACT

Oral squamous cell carcinoma (OSCC) stands as a predominant and perilous malignant neoplasm globally, with the majority of cases originating from oral potential malignant disorders (OPMDs). Despite this, effective strategies to impede the progression of OPMDs to OSCC remain elusive. In this study, we established mouse models of oral carcinogenesis via 4-nitroquinoline 1-oxide induction, mirroring the sequential transformation from normal oral mucosa to OPMDs, culminating in OSCC development. By intervening during the OPMDs stage, we observed that combining PD1 blockade with photodynamic therapy (PDT) significantly mitigated oral carcinogenesis progression. Single-cell transcriptomic sequencing unveiled microenvironmental dysregulation occurring predominantly from OPMDs to OSCC stages, fostering a tumor-promoting milieu characterized by increased Treg proportion, heightened S100A8 expression, and decreased Fib_Igfbp5 (a specific fibroblast subtype) proportion, among others. Notably, intervening with PD1 blockade and PDT during the OPMDs stage hindered the formation of the tumor-promoting microenvironment, resulting in decreased Treg proportion, reduced S100A8 expression, and increased Fib_Igfbp5 proportion. Moreover, combination therapy elicited a more robust treatment-associated immune response compared with monotherapy. In essence, our findings present a novel strategy for curtailing the progression of oral carcinogenesis.

2.
Aging (Albany NY) ; 162024 Jul 03.
Article in English | MEDLINE | ID: mdl-38968594

ABSTRACT

BACKGROUND: Diabetic nephropathy (DN) is a severe complication of diabetes that affects the kidneys. Disulfidptosis, a newly defined type of programmed cell death, has emerged as a potential area of interest, yet its significance in DN remains unexplored. METHODS: This study utilized single-cell sequencing data GSE131882 from GEO database combined with bulk transcriptome sequencing data GSE30122, GSE30528 and GSE30529 to investigate disulfidptosis in DN. Single-cell sequencing analysis was performed on samples from DN patients and healthy controls, focusing on cell heterogeneity and communication. Weighted gene co-expression network analysis (WGCNA) and gene set enrichment analysis (GSEA) were employed to identify disulfidptosis-related gene sets and pathways. A diagnostic model was constructed using machine learning techniques based on identified genes, and immunocorrelation analysis was conducted to explore the relationship between key genes and immune cells. PCR validation was performed on blood samples from DN patients and healthy controls. RESULTS: The study revealed significant disulfidptosis heterogeneity and cell communication differences in DN. Specific targets related to disulfidptosis were identified, providing insights into the pathogenesis of DN. The diagnostic model demonstrated high accuracy in distinguishing DN from healthy samples across multiple datasets. Immunocorrelation analysis highlighted the complex interactions between immune cells and key disulfidptosis-related genes. PCR validation supported the differential expression of model genes VEGFA, MAGI2, THSD7A and ANKRD28 in DN. CONCLUSION: This research advances our understanding of DN by highlighting the role of disulfidptosis and identifying potential biomarkers for early detection and personalized treatment.

3.
Int J Nanomedicine ; 19: 6099-6126, 2024.
Article in English | MEDLINE | ID: mdl-38911500

ABSTRACT

The relentless pursuit of effective cancer diagnosis and treatment strategies has led to the rapidly expanding field of nanotechnology, with a specific focus on nanocomposites. Nanocomposites, a combination of nanomaterials with diverse properties, have emerged as versatile tools in oncology, offering multifunctional platforms for targeted delivery, imaging, and therapeutic interventions. Nanocomposites exhibit great potential for early detection and accurate imaging in cancer diagnosis. Integrating various imaging modalities, such as magnetic resonance imaging (MRI), computed tomography (CT), and fluorescence imaging, into nanocomposites enables the development of contrast agents with enhanced sensitivity and specificity. Moreover, functionalizing nanocomposites with targeting ligands ensures selective accumulation in tumor tissues, facilitating precise imaging and diagnostic accuracy. On the therapeutic front, nanocomposites have revolutionized cancer treatment by overcoming traditional challenges associated with drug delivery. The controlled release of therapeutic agents from nanocomposite carriers enhances drug bioavailability, reduces systemic toxicity, and improves overall treatment efficacy. Additionally, the integration of stimuli-responsive components within nanocomposites enables site-specific drug release triggered by the unique microenvironment of the tumor. Despite the remarkable progress in the field, challenges such as biocompatibility, scalability, and long-term safety profiles remain. This article provides a comprehensive overview of recent developments, challenges, and prospects, emphasizing the transformative potential of nanocomposites in revolutionizing the landscape of cancer diagnostics and therapeutics. In Conclusion, integrating nanocomposites in cancer diagnosis and treatment heralds a new era for precision medicine.


Subject(s)
Nanocomposites , Neoplasms , Humans , Nanocomposites/chemistry , Neoplasms/diagnostic imaging , Neoplasms/diagnosis , Neoplasms/drug therapy , Neoplasms/therapy , Animals , Antineoplastic Agents/administration & dosage , Drug Delivery Systems/methods , Magnetic Resonance Imaging/methods , Contrast Media/chemistry , Nanomedicine/methods , Tomography, X-Ray Computed , Drug Carriers/chemistry
4.
Aging (Albany NY) ; 16(9): 8031-8043, 2024 05 06.
Article in English | MEDLINE | ID: mdl-38713159

ABSTRACT

BACKGROUND: Stratifying patient risk and exploring the tumor microenvironment are critical endeavors in prostate cancer research, essential for advancing our understanding and management of this disease. METHODS: Single-cell sequencing data for prostate cancer were sourced from the pradcellatlas website, while bulk transcriptome data were obtained from the TCGA database. Dimensionality reduction cluster analysis was employed to investigate heterogeneity in single-cell sequencing data. Gene set enrichment analysis, utilizing GO and KEGG pathways, was conducted to explore functional aspects. Weighted gene coexpression network analysis (WGCNA) identified key gene modules. Prognostic models were developed using Cox regression and LASSO regression techniques, implemented in R software. Validation of key gene expression levels was performed via PCR assays. RESULTS: Through integrative analysis of single-cell and bulk transcriptome data, key genes implicated in prostate cancer pathogenesis were identified. A prognostic model focused on sphingolipid metabolism (SRSR) was constructed, comprising five genes: "FUS," "MARK3," "CHTOP," "ILF3," and "ARIH2." This model effectively stratified patients into high-risk and low-risk groups, with the high-risk cohort exhibiting significantly poorer prognoses. Furthermore, distinct differences in the immune microenvironment were observed between these groups. Validation of key gene expression, exemplified by ILF3, was confirmed through PCR analysis. CONCLUSION: This study contributes to our understanding of the role of sphingolipid metabolism in prostate cancer diagnosis and treatment. The identified prognostic model holds promise for improving risk stratification and patient outcomes in clinical settings.


Subject(s)
Prostatic Neoplasms , Single-Cell Analysis , Sphingolipids , Humans , Prostatic Neoplasms/genetics , Prostatic Neoplasms/metabolism , Prostatic Neoplasms/pathology , Male , Prognosis , Sphingolipids/metabolism , Tumor Microenvironment/genetics , Gene Expression Regulation, Neoplastic , Transcriptome , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Gene Expression Profiling , Gene Regulatory Networks
5.
Pharmaceuticals (Basel) ; 17(5)2024 May 09.
Article in English | MEDLINE | ID: mdl-38794176

ABSTRACT

Mesenchymal stem cells (MSCs) have shown great potential in the treatment of several inflammatory diseases due to their immunomodulatory ability, which is mediated by exosomes secreted by MSCs (MSC-Exs). The incidence of inflammatory bowel disease (IBD) is increasing globally, but there is currently no long-term effective treatment. As an emerging therapy, MSC-Exs have proven to be effective in alleviating IBD experimentally, and the specific mechanism continues to be explored. The gut microbiota plays an important role in the occurrence and development of IBD, and MSCs and MSC-Exs can effectively regulate gut microbiota in animal models of IBD, but the mechanism involved and whether the outcome can relieve the characteristic dysbiosis necessary to alleviate IBD still needs to be studied. This review provides current evidence on the effective modulation of the gut microbiota by MSC-Exs, offering a basis for further research on the pathogenic mechanism of IBD and MSC-Ex treatments through the improvement of gut microbiota.

6.
Front Cell Dev Biol ; 12: 1401945, 2024.
Article in English | MEDLINE | ID: mdl-38770150

ABSTRACT

Background: Cutaneous melanoma is a highly heterogeneous cancer, and understanding the role of inflammation-related genes in its progression is crucial. Methods: The cohorts used include the TCGA cohort from TCGA database, and GSE115978, GSE19234, GSE22153 cohort, and GSE65904 cohort from GEO database. Weighted Gene Coexpression Network Analysis (WGCNA) identified key inflammatory modules. Machine learning techniques were employed to construct prognostic models, which were validated across multiple cohorts, including the TCGA cohort, GSE19234, GSE22153, and GSE65904. Immune cell infiltration, tumor mutation load, and immunotherapy response were assessed. The hub gene STAT1 was validated through cellular experiments. Results: Single-cell analysis revealed heterogeneity in inflammation-related genes, with NK cells, T cells, and macrophages showing elevated inflammation-related scores. WGCNA identified a module highly associated with inflammation. Machine learning yielded a CoxBoost + GBM prognostic model. The model effectively stratified patients into high-risk and low-risk groups in multiple cohorts. A nomogram and Receiver Operating Characteristic (ROC) curves confirmed the model's accuracy. Low-risk patients exhibited increased immune cell infiltration, higher Tumor Mutational Burden (TMB), and potentially better immunotherapy response. Cellular experiments validated the functional role of STAT1 in melanoma progression. Conclusion: Inflammation-related genes play a critical role in cutaneous melanoma progression. The developed prognostic model, nomogram, and validation experiments highlight the potential clinical relevance of these genes and provide a basis for further investigation into personalized treatment strategies for melanoma patients.

7.
Int J Mol Med ; 53(6)2024 06.
Article in English | MEDLINE | ID: mdl-38695222

ABSTRACT

Inflammatory bowel disease (IBD) is marked by persistent inflammation, and its development and progression are linked to environmental, genetic, immune system and gut microbial factors. DNA methylation (DNAm), as one of the protein modifications, is a crucial epigenetic process used by cells to control gene transcription. DNAm is one of the most common areas that has drawn increasing attention recently, with studies revealing that the interleukin (IL)­23/IL­12, wingless­related integration site, IL­6­associated signal transducer and activator of transcription 3, suppressor of cytokine signaling 3 and apoptosis signaling pathways are involved in DNAm and in the pathogenesis of IBD. It has emerged that DNAm­associated genes are involved in perpetuating the persistent inflammation that characterizes a number of diseases, including IBD, providing a novel therapeutic strategy for exploring their treatment. The present review discusses DNAm­associated genes in the pathogenesis of IBD and summarizes their application as possible diagnostic, prognostic and therapeutic biomarkers in IBD. This may provide a reference for the particular form of IBD and its related methylation genes, aiding in clinical decision­making and encouraging therapeutic alternatives.


Subject(s)
DNA Methylation , Inflammatory Bowel Diseases , Humans , DNA Methylation/genetics , Inflammatory Bowel Diseases/genetics , Epigenesis, Genetic , Animals , Biomarkers , Signal Transduction/genetics
8.
Mol Biotechnol ; 2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38683442

ABSTRACT

Hepatocellular carcinoma (HCC) is a common type of cancer that ranks first in cancer-associated death worldwide. Carbamoyl-phosphate synthetase 2, aspartate transcarbamylase, and dihydroorotase (CAD) are the key components of the pyrimidine pathway, which promotes cancer development. However, the function of CAD in HCC needs to be clarified. In this study, the clinical and transcriptome data of 424 TCGA-derived HCC cases were analyzed. The results demonstrated that high CAD expression was associated with poor prognosis in HCC patients. The effect of CAD on HCC was then investigated comprehensively using GO annotation analysis, KEGG enrichment analysis, Gene Set Enrichment Analysis (GSEA), and CIBERSORT algorithm. The results showed that CAD expression was correlated with immune checkpoint inhibitors and immune cell infiltration. In addition, low CAD levels in HCC patients predicted increased sensitivity to anti-CTLA4 and PD1, while HCC patients with high CAD expression exhibited high sensitivity to chemotherapeutic and molecular-targeted agents, including gemcitabine, paclitaxel, and sorafenib. Finally, the results from clinical sample suggested that CAD expression increased remarkably in HCC compared with non-cancerous tissues. Loss of function experiments demonstrated that CAD knockdown could significantly inhibit HCC cell growth and migration both in vitro and in vivo. Collectively, the results indicated that CAD is a potential oncogene during HCC metastasis and progression. Therefore, CAD is recommended as a candidate marker and target for HCC prediction and treatment.

9.
Front Pharmacol ; 15: 1383203, 2024.
Article in English | MEDLINE | ID: mdl-38666028

ABSTRACT

Ferroptosis is an emerging mode of programmed cell death fueled by iron buildup and lipid peroxidation. Recent evidence points to the function of ferroptosis in the aetiology and development of cancer and other disorders. Consequently, harnessing iron death for disease treatment has diverted the interest of the researchers in the field of basic and clinical research. The ubiquitin-proteasome system (UPS) represents a primary protein degradation pathway in eukaryotes. It involves labelling proteins to be degraded by ubiquitin (Ub), followed by recognition and degradation by the proteasome. Dysfunction of the UPS can contribute to diverse pathological processes, emphasizing the importance of maintaining organismal homeostasis. The regulation of protein stability is a critical component of the intricate molecular mechanism underlying iron death. Moreover, the intricate involvement of the UPS in regulating iron death-related molecules and signaling pathways, providing valuable insights for targeted treatment strategies. Besides, it highlights the potential of ferroptosis as a promising target for cancer therapy, emphasizing the combination between ferroptosis and the UPS. The molecular mechanisms underlying ferroptosis, including key regulators such as glutathione peroxidase 4 (GPX4), cysteine/glutamate transporter (system XC-), and iron metabolism, are thoroughly examined, alongside the role of the UPS in modulating the abundance and activity of crucial proteins for ferroptotic cell death, such as GPX4, and nuclear factor erythroid 2-related factor 2 (NRF2). As a pivotal regulatory system for macromolecular homeostasis, the UPS substantially impacts ferroptosis by directly or indirectly modulating iron death-related molecules or associated signaling pathways. This review explores the involvement of the UPS in regulating iron death-related molecules and signaling pathways, providing valuable insights for the targeted treatment of diseases associated with ferroptosis.

10.
Phys Chem Chem Phys ; 26(14): 11078-11083, 2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38529830

ABSTRACT

The electronic and magnetic properties of d0 dilute magnetic semiconductors formed by rock-salt structured magnesium oxide (MgO) doped with C are systematically studied based on first-principles calculations and the Ising model. It is shown that the electronic holes of p states are generated due to the impurity carbon replacing oxygen in MgO, and the magnetic moment of 2µB is introduced by each C impurity. The polarization energy and formation energy of C-doped MgO are calculated, and the magnetization energy of C-doped MgO is also calculated which is used to obtain the exchange constant between C impurities. By means of the Ising model, we simulated the magnetization and the susceptibility of the doped system with increasing temperature and obtained the Curie temperature of C-doped MgO.

11.
J Med Chem ; 67(7): 5783-5799, 2024 Apr 11.
Article in English | MEDLINE | ID: mdl-38526960

ABSTRACT

Neutrophil-mediated immunotherapy is a promising strategy for treating Candida albicans infection due to its potential in dealing with drug-resistant events. Our previous study found that ACT001 exhibited good antifungal immunotherapeutic activity by inhibiting PD-L1 expression in neutrophils, but its strong cytotoxicity and high BBB permeability hindered its antifungal application. To address these deficiencies, a series of novel sulfide derivatives were designed and synthesized based on a slow-release prodrug strategy. Among these derivatives, compound 16 exhibited stronger inhibition of PD-L1 expression, less cytotoxicity to neutrophils, and lower BBB permeability than ACT001. Compound 16 also significantly enhanced neutrophil-mediated antifungal immunity in C. albicans infected mice, with acceptable pharmacokinetic properties and good oral safety. Moreover, pharmacological mechanism studies demonstrated that ACT001 and compound 16 reduced PD-L1 expression in neutrophils by directly targeting STAT3. Briefly, this study provided a novel prototype compound 16 which exhibited great potential in neutrophil-mediated antifungal immunotherapy.


Subject(s)
Antifungal Agents , Furans , Neutrophils , Animals , Mice , Antifungal Agents/pharmacology , Antifungal Agents/metabolism , Neutrophils/metabolism , B7-H1 Antigen , Drug Repositioning , Candida albicans/metabolism
12.
Adv Sci (Weinh) ; 11(15): e2304203, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38342610

ABSTRACT

Tumors often overexpress glucose-regulated proteins, and agents that interfere with the production or activity of these proteins may represent novel cancer treatments. The chlorpromazine derivative JX57 exhibits promising effects against endometrial cancer with minimal extrapyramidal side effects; however, its mechanisms of action are currently unknown. Here, glucose-regulated protein 75 kD (GRP75) is identified as a direct target of JX57 using activity-based protein profiling and loss-of-function experiments. The findings show that GRP75 is necessary for the biological activity of JX57, as JX57 exhibits moderate anticancer properties in GRP75-deficient cancer cells, both in vitro and in vivo. High GRP75 expression is correlated with poor differentiation and poor survival in patients with endometrial cancer, whereas the knockdown of GRP75 can significantly suppress tumor growth. Mechanistically, the direct binding of JX57 to GRP75 impairs the structure of the mitochondria-associated endoplasmic reticulum membrane and disrupts the endoplasmic reticulum-mitochondrial calcium homeostasis, resulting in a mitochondrial energy crisis and AMP-activated protein kinase activation. Taken together, these findings highlight GRP75 as a potential prognostic biomarker and direct therapeutic target in endometrial cancer and suggest that the chlorpromazine derivative JX57 can potentially be a new therapeutic option for endometrial cancer.


Subject(s)
AMP-Activated Protein Kinases , Endometrial Neoplasms , HSP70 Heat-Shock Proteins , Membrane Proteins , Female , Humans , AMP-Activated Protein Kinases/metabolism , Chlorpromazine/pharmacology , Chlorpromazine/therapeutic use , Endometrial Neoplasms/drug therapy , Endometrial Neoplasms/metabolism , Mitochondria/metabolism
13.
Sci Rep ; 14(1): 3175, 2024 02 07.
Article in English | MEDLINE | ID: mdl-38326642

ABSTRACT

Non-alcoholic fatty liver disease (NAFLD) has emerged as one of the major causes of liver-related morbidity and mortality globally. It ranges from simple steatosis to non-alcoholic steatohepatitis (NASH) characterized by ballooning and hepatic inflammation. In the past few years, pyroptosis has been shown as a type of programmed cell death that triggers inflammation and plays a role in the development of NASH. However, the roles of pyroptosis-related genes (PRGs) in NASH remained unclear. In this study, we studied the expression level of pyroptosis-related genes (PRGs) in NASH and healthy controls, developed a diagnostic model of NASH based on PRGs and explored the pathological mechanisms associated with pyroptosis. We further compared immune status between NASH and healthy controls, analyzed immune status in different subtypes of NASH. We identified altogether twenty PRGs that were differentially expressed between NASH and normal liver tissues. Then, a novel diagnostic model consisting of seven PRGs including CASP3, ELANE, GZMA, CASP4, CASP9, IL6 and TP63 for NASH was constructed with an area under the ROC curve (AUC) of 0.978 (CI 0.965-0.99). Obvious variations in immune status between healthy controls and NASH cases were detected. Subsequently, the consensus clustering method based on differentially expressed PRGs was constructed to divide all NASH cases into two distinct pyroptosis subtypes with different immune and biological characteristics. Pyroptosis-related genes may play an important role in NASH and can provide new insights into the diagnosis and underlying mechanisms of NASH.


Subject(s)
Non-alcoholic Fatty Liver Disease , Humans , Non-alcoholic Fatty Liver Disease/metabolism , Pyroptosis/genetics , Inflammation/pathology
14.
Acta Pharm Sin B ; 14(2): 729-750, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38322326

ABSTRACT

Chemotherapy-induced complications, particularly lethal cardiovascular diseases, pose significant challenges for cancer survivors. The intertwined adverse effects, brought by cancer and its complication, further complicate anticancer therapy and lead to diminished clinical outcomes. Simple supplementation of cardioprotective agents falls short in addressing these challenges. Developing bi-functional co-therapy agents provided another potential solution to consolidate the chemotherapy and reduce cardiac events simultaneously. Drug repurposing was naturally endowed with co-therapeutic potential of two indications, implying a unique chance in the development of bi-functional agents. Herein, we further proposed a novel "trilogy of drug repurposing" strategy that comprises function-based, target-focused, and scaffold-driven repurposing approaches, aiming to systematically elucidate the advantages of repurposed drugs in rationally developing bi-functional agent. Through function-based repurposing, a cardioprotective agent, carvedilol (CAR), was identified as a potential neddylation inhibitor to suppress lung cancer growth. Employing target-focused SAR studies and scaffold-driven drug design, we synthesized 44 CAR derivatives to achieve a balance between anticancer and cardioprotection. Remarkably, optimal derivative 43 displayed promising bi-functional effects, especially in various self-established heart failure mice models with and without tumor-bearing. Collectively, the present study validated the practicability of the "trilogy of drug repurposing" strategy in the development of bi-functional co-therapy agents.

15.
Theranostics ; 14(2): 640-661, 2024.
Article in English | MEDLINE | ID: mdl-38169587

ABSTRACT

Regulated cell death (RCD) is considered a critical pathway in cancer therapy, contributing to eliminating cancer cells and influencing treatment outcomes. The application of RCD in cancer treatment is marked by its potential in targeted therapy and immunotherapy. As a type of RCD, PANoptosis has emerged as a unique form of programmed cell death (PCD) characterized by features of pyroptosis, apoptosis, and necroptosis but cannot be fully explained by any of these pathways alone. It is regulated by a multi-protein complex called the PANoptosome. As a relatively new concept first described in 2019, PANoptosis has been shown to play a role in many diseases, including cancer, infection, and inflammation. This study reviews the application of PCD in cancer, particularly the emergence and implication of PANoptosis in developing therapeutic strategies for cancer. Studies have shown that the characterization of PANoptosis patterns in cancer can predict survival and response to immunotherapy and chemotherapy, highlighting the potential for PANoptosis to be used as a therapeutic target in cancer treatment. It also plays a role in limiting the spread of cancer cells. PANoptosis allows for the elimination of cancer cells by multiple cell death pathways and has the potential to address various challenges in cancer treatment, including drug resistance and immune evasion. Moreover, active investigation of the mechanisms and potential therapeutic agents that can induce PANoptosis in cancer cells is likely to yield effective cancer treatments and improve patient outcomes. Research on PANoptosis is still ongoing, but it is a rapidly evolving field with the potential to lead to new treatments for various diseases, including cancer.


Subject(s)
Neoplasms , Regulated Cell Death , Humans , Immunotherapy , Neoplasms/drug therapy , Apoptosis , Cell Death
16.
Mol Carcinog ; 63(4): 563-576, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38085124

ABSTRACT

Oral squamous cell carcinoma is the predominant subtype of head and neck squamous cell carcinoma, characterized by a challenging prognosis. In this study, we established a murine model of oral carcinogenesis using 4-nitroquinoline-1-oxide (4-NQO) induction to investigate the impact of immunotherapy on microenvironmental alterations. Mice in the precancerous condition were randomly divided into two groups: one receiving programmed death-1 (PD1) monoclonal antibody treatment and the other, control immunoglobulin G. Our observations showed that while PD1 blockade effectively delayed the progression of carcinogenesis, it did not completely impede or reverse it. To unravel the underlying reasons for the limited effectiveness of PD1 blockade, we collected tongue lesions and applied mass cytometry (CyTOF) and RNA sequencing (RNA-seq) to characterize the microenvironment. CyTOF analysis revealed an increased macrophage subset (expressing high levels of IFNγ and iNOS) alongside a diminished Th1-like subset (exhibiting low expression of TCF7) and three myeloid-derived suppressor cell subsets (displaying low expression of MHC Class II or IFNγ) following anti-PD1 treatment. Notably, we observed an increased presence of cancer-associated fibroblasts (CAFs) expressing collagen-related genes after PD1 blockade. Furthermore, we found a negative correlation between the infiltration levels of CAFs and CD8+ T cells. These findings were validated in murine tongue tissue slides, and publicly available multi-omics datasets. Our results suggest that CAFs may impair the therapeutic efficacy of PD1 blockade in oral carcinogenesis by the remodeling of the extracellular matrix.


Subject(s)
Carcinoma, Squamous Cell , Head and Neck Neoplasms , Mouth Neoplasms , Mice , Animals , Carcinoma, Squamous Cell/pathology , Mouth Neoplasms/chemically induced , Mouth Neoplasms/genetics , CD8-Positive T-Lymphocytes , Carcinogenesis , Squamous Cell Carcinoma of Head and Neck , Gene Expression Profiling , Tumor Microenvironment
17.
J Chemother ; 36(3): 238-248, 2024 May.
Article in English | MEDLINE | ID: mdl-37916436

ABSTRACT

Pacritinib is an oral medication that inhibits several kinases including JAK2, FLT3, IRAK and STAT3. It has been recently approved to treat patients with thrombocytopenia and myelofibrosis. Studies are currently exploring the potential use of pacritinib in treating other types of cancer such as leukaemia, breast cancer and prostate cancer. Our study aimed to investigate the effects of pacritinib alone and its combination with standard of care in renal cell carcinoma (RCC). We showed that pacritinib dose-dependently decreased viability of RCC cells, with IC50 at nanomolar or low micromolar concentration rage. Pacritinib inhibited cell proliferation, decreased colony formation, and increased apoptosis. Interestingly, pacritinib exhibited synergistic effects when combined with temsirolimus and sunitinib, but antagonistic effects when combined with doxorubicin, in a panel of RCC cell lines. We also confirmed that the combination of pacritinib with temsirolimus and sunitinib resulted in synergistic effects in RCC mouse models, with complete inhibition of tumour growth throughout the treatment period. Mechanistic studies indicated that the inhibition of JAK2, but not IRAK, was the main contributor to the anti-RCC activity of pacritinib. Our study is the first to demonstrate that pacritinib shows promise as a treatment option for RCC and underscores the therapeutic potential of targeting the JAK2/STAT signalling pathway in RCC.


Subject(s)
Bridged-Ring Compounds , Carcinoma, Renal Cell , Kidney Neoplasms , Pyrimidines , Sirolimus/analogs & derivatives , Male , Animals , Mice , Humans , Sunitinib/therapeutic use , Carcinoma, Renal Cell/drug therapy , Carcinoma, Renal Cell/pathology , Protein Kinase Inhibitors/therapeutic use , Kidney Neoplasms/drug therapy , Kidney Neoplasms/pathology , Cell Line, Tumor , Janus Kinase 2
18.
Aging (Albany NY) ; 15(24): 15114-15133, 2023 12 20.
Article in English | MEDLINE | ID: mdl-38127056

ABSTRACT

BACKGROUND: Gastric cancer is a prevalent type of tumor with a poor prognosis. Given the high occurrence of genomic instability in gastric cancer, it is essential to investigate the prognostic significance of genes associated with genomic instability in this disease. METHODS: We identified genomic instability-related lncRNAs (GInLncRNAs) by analyzing somatic mutation and transcriptome profiles. We evaluated co-expression and enrichment using various analyses, including univariate COX analysis and LASSO regression. Based on these findings, we established an lncRNA signature associated with genomic instability, which we subsequently assessed for prognostic value, immune cell and checkpoint analysis, drug sensitivity, and external validation. Finally, PCR assay was used to verify the expression of key lncRNAs. RESULTS: Our study resulted in the establishment of a seven-lncRNA prognostic signature, including PTENP1-AS, LINC00163, RP11-169F17.1, C8ORF87, RP11-389G6.3, LINCO1210, and RP11-115H13.1. This signature exhibited independent prognostic value and was associated with specific immune cells and checkpoints in gastric cancer. Additionally, the model was correlated with somatic mutation and several chemotherapeutic drugs. We further confirmed the prognostic value of LINC00163, which was included in our model, in an independent dataset. Our model demonstrated superior performance compared to other models. PCR showed that LINC00163 was significantly up-regulated in 4 adjacent normal tissues compared with the GC tissues. CONCLUSIONS: Our study resulted in the establishment of a seven-lncRNA signature associated with genomic instability, which demonstrated robust prognostic value in predicting the prognosis of gastric cancer. The signature also identified potential chemotherapeutic drugs, making it a valuable tool for clinical decision-making and medication use.


Subject(s)
RNA, Long Noncoding , Stomach Neoplasms , Humans , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Stomach Neoplasms/genetics , Stomach Neoplasms/pathology , Kaplan-Meier Estimate , Prognosis , Transcriptome , Genomic Instability
19.
Front Endocrinol (Lausanne) ; 14: 1242991, 2023.
Article in English | MEDLINE | ID: mdl-37881499

ABSTRACT

Inflammatory bowel disease (IBD) has been referred to as the "green cancer," and its progression to colorectal cancer (CRC) poses a significant challenge for the medical community. A common factor in their development is glycolysis, a crucial metabolic mechanism of living organisms, which is also involved in other diseases. In IBD, glycolysis affects gastrointestinal components such as the intestinal microbiota, mucosal barrier function, and the immune system, including macrophages, dendritic cells, T cells, and neutrophils, while in CRC, it is linked to various pathways, such as phosphatidylinositol-3-kinase (PI3K)/AKT, AMP-activated protein kinase (AMPK), mammalian target of rapamycin (mTOR), and transcription factors such as p53, Hypoxia-inducible factor (HIF), and c-Myc. Thus, a comprehensive study of glycolysis is essential for a better understanding of the pathogenesis and therapeutic targets of both IBD and CRC. This paper reviews the role of glycolysis in diseases, particularly IBD and CRC, via its effects on the intestinal microbiota, immunity, barrier integrity, signaling pathways, transcription factors and some therapeutic strategies targeting glycolytic enzymes.


Subject(s)
Colorectal Neoplasms , Inflammatory Bowel Diseases , Humans , Signal Transduction , Colorectal Neoplasms/etiology , Transcription Factors , Glycolysis
20.
Nucleic Acids Res ; 51(21): 11568-11583, 2023 Nov 27.
Article in English | MEDLINE | ID: mdl-37850650

ABSTRACT

The cistrome consists of all cis-acting regulatory elements recognized by transcription factors (TFs). However, only a portion of the cistrome is active for TF binding in a specific tissue. Resolving the active cistrome in plants remains challenging. In this study, we report the assay sequential extraction assisted-active TF identification (sea-ATI), a low-input method that profiles the DNA sequences recognized by TFs in a target tissue. We applied sea-ATI to seven plant tissues to survey their active cistrome and generated 41 motif models, including 15 new models that represent previously unidentified cis-regulatory vocabularies. ATAC-seq and RNA-seq analyses confirmed the functionality of the cis-elements from the new models, in that they are actively bound in vivo, located near the transcription start site, and influence chromatin accessibility and transcription. Furthermore, comparing dimeric WRKY CREs between sea-ATI and DAP-seq libraries revealed that thermodynamics and genetic drifts cooperatively shaped their evolution. Notably, sea-ATI can identify not only positive but also negative regulatory cis-elements, thereby providing unique insights into the functional non-coding genome of plants.


Subject(s)
Plants , Transcription Factors , Vocabulary , Chromatin , Protein Binding/genetics , Regulatory Sequences, Nucleic Acid , Transcription Factors/genetics , Transcription Factors/metabolism , Plants/genetics
SELECTION OF CITATIONS
SEARCH DETAIL