Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 31
Filter
Add more filters








Publication year range
1.
Genome Biol Evol ; 16(10)2024 Oct 09.
Article in English | MEDLINE | ID: mdl-39293000

ABSTRACT

The genus Asparagus arose ∼9 to 15 million years ago (Ma), and transitions from hermaphroditism to dioecy (separate sexes) occurred ∼3 to 4 Ma. Roughly 27% of extant Asparagus species are dioecious, while the remaining are bisexual with monoclinous flowers. As such, Asparagus is an ideal model taxon for studying the early stages of dioecy and sex chromosome evolution in plants. Until now, however, understanding of diversification and shifts from hermaphroditism to dioecy in Asparagus has been hampered by the lack of robust species tree estimates for the genus. In this study, a genus-wide phylogenomic analysis including 1,726 nuclear loci and comprehensive species sampling supports two independent origins of dioecy in Asparagus-first in a widely distributed Eurasian clade and then in a clade restricted to the Mediterranean Basin. Modeling of ancestral biogeography indicates that both dioecy origins were associated with range expansion out of southern Africa. Our findings also reveal several bursts of diversification across the phylogeny, including an initial radiation in southern Africa that gave rise to 12 major clades in the genus, and more recent radiations that have resulted in paraphyly and polyphyly among closely related species, as expected given active speciation processes. Lastly, we report that the geographic origin of domesticated garden asparagus (Asparagus officinalis L.) was likely in western Asia near the Mediterranean Sea. The presented phylogenomic framework for Asparagus is foundational for ongoing genomic investigations of diversification and functional trait evolution in the genus and contributes to its utility for understanding the origin and early evolution of dioecy and sex chromosomes.


Subject(s)
Asparagus Plant , Phylogeny , Asparagus Plant/genetics , Africa, Southern , Biological Evolution , Evolution, Molecular , Phylogeography
2.
BMC Genomics ; 25(1): 857, 2024 Sep 12.
Article in English | MEDLINE | ID: mdl-39266980

ABSTRACT

BACKGROUND: Asparagus L., widely distributed in the old world is a genus under Asparagaceae, Asparagales. The species of the genus were mainly used as vegetables, traditional medicines as well as ornamental plants. However, the evolution and functions of mitochondrial (Mt) genomes (mitogenomes) remains largely unknown. In this study, the typical herbal medicine A. taliensis and ornamental plant A. setaceus were used to assemble and annotate the mitogenomes, and the resulting mitogenomes were further compared with published mitogenome of A. officinalis for the analysis of their functions in the context of domestication and adaptative evolution. RESULTS: The mitochondrial genomes of both A. taliensis and A. setaceus were assembled as complete circular ones. The phylogenetic trees based on conserved protein-coding genes of Mt genomes and whole chloroplast (Cp) genomes showed that, the phylogenetic relationship of the sampled 13 species of Asparagus L. were not exactly consistent. The collinear analyses between the nuclear (Nu) and Mt genomes confirmed the existence of mutual horizontal genes transfers (HGTs) between Nu and Mt genomes within these species. Based on RNAseq data, the Mt RNA editing were predicted and atp1 and ccmB RNA editing of A. taliensis were further confirmed by DNA sequencing. Simultaneously homologous search found 5 Nu coding gene families including pentatricopeptide-repeats (PPRs) involved in Mt RNA editing. Finally, the Mt genome variations, gene expressions and mutual HGTs between Nu and Mt were detected with correlation to the growth and developmental phenotypes respectively. The results suggest that, both Mt and Nu genomes co-evolved and maintained the Mt organella replication and energy production through TCA and oxidative phosphorylation . CONCLUSION: The assembled and annotated complete mitogenomes of both A. taliensis and A. setaceus provide valuable information for their phylogeny and concerted action of Nu and Mt genomes to maintain the energy production system of Asparagus L. in the context of domestication and adaptation to environmental niches.


Subject(s)
Asparagus Plant , Domestication , Evolution, Molecular , Genome, Mitochondrial , Phylogeny , Asparagus Plant/genetics , RNA Editing , Gene Transfer, Horizontal , Genome, Chloroplast
3.
Front Microbiol ; 15: 1386150, 2024.
Article in English | MEDLINE | ID: mdl-38784812

ABSTRACT

Changes in climatic factors and rhizosphere microbiota led plants to adjust their metabolic strategies for survival under adverse environmental conditions. Changes in plant metabolites can mediate crop growth and development and interact with rhizosphere microbiota of the plant rhizosphere. To understand the interactions among environmental factors, rhizosphere microbiota, and metabolites of tobacco, a study was conducted by using integrated metagenomic and metabolomic strategies at four typical representative tobacco planting sites in Yunnan, China. The results showed that the agronomical and biochemical traits were significantly affected by temperature, precipitation (PREP), soil pH, and altitude. Correlation analyses revealed a significant positive correlation of temperature with length, width, and area of the leaf, while PREP correlated with plant height and effective leaf numbers. Furthermore, total sugar and reducing sugar contents of baked leaves were significantly higher, while the total nitrogen and total alkaloid levels were lower in tobacco leaves at site with low PREP. A total of 770 metabolites were detected with the highest number of different abundant metabolites (DMs) at Chuxiong (CX) with low PREP as compared to the other three sites, in which secondary metabolites were more abundant in both leaves and roots of tobacco. A total of 8,479 species, belonging to 2,094 genera with 420 individual bins (including 13 higher-quality bins) harboring 851,209 CDSs were detected. The phyla levels of microorganisms such as Euryarchaeota, Myxococcota, and Deinococcota were significantly enriched at the CX site, while Pseudomonadota was enriched at the high-temperature site with good PREP. The correlation analyses showed that the metabolic compounds in low-PREP site samples were positively correlated with Diaminobutyricimonas, Nissabacter, Alloactinosynnema, and Catellatospora and negatively correlated with Amniculibacterium, Nordella, Noviherbaspirillum, and Limnobacter, suggesting that the recruitment of Diaminobutyricimonas, Nissabacter, Alloactinosynnema, and Catellatospora in the rhizosphere induces the production and accumulation of secondary metabolites (SMs) (e.g., nitrogen compounds, terpenoids, and phenolics) for increasing drought tolerance with an unknown mechanism. The results of this study may promote the production and application of microbial fertilizers and agents such as Diaminobutyricimonas and Alloactinosynnema to assemble synthetic microbiota community or using their gene resources for better cultivation of tobacco as well as other crops in drought environments.

4.
Am J Bot ; 111(2): e16276, 2024 02.
Article in English | MEDLINE | ID: mdl-38297448

ABSTRACT

PREMISE: Dioecy (separate sexes) has independently evolved numerous times across the angiosperm phylogeny and is recently derived in many lineages. However, our understanding is limited regarding the evolutionary mechanisms that drive the origins of dioecy in plants. The recent and repeated evolution of dioecy across angiosperms offers an opportunity to make strong inferences about the ecological, developmental, and molecular factors influencing the evolution of dioecy, and thus sex chromosomes. The genus Asparagus (Asparagaceae) is an emerging model taxon for studying dioecy and sex chromosome evolution, yet estimates for the age and origin of dioecy in the genus are lacking. METHODS: We use plastome sequences and fossil time calibrations in phylogenetic analyses to investigate the age and origin of dioecy in the genus Asparagus. We also review the diversity of sexual systems present across the genus to address contradicting reports in the literature. RESULTS: We estimate that dioecy evolved once or twice approximately 2.78-3.78 million years ago in Asparagus, of which roughly 27% of the species are dioecious and the remaining are hermaphroditic with monoclinous flowers. CONCLUSIONS: Our findings support previous work implicating a young age and the possibility of two origins of dioecy in Asparagus, which appear to be associated with rapid radiations and range expansion out of Africa. Lastly, we speculate that paleoclimatic oscillations throughout northern Africa may have helped set the stage for the origin(s) of dioecy in Asparagus approximately 2.78-3.78 million years ago.


Subject(s)
Biological Evolution , Sex Chromosomes , Phylogeny , Africa , Africa, Northern
5.
Food Chem (Oxf) ; 8: 100187, 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-38186632

ABSTRACT

The synthetic pathways of some phenolics compounds in asparagus have been reported, however, the diversified phenolics compounds including their modification and transcription regulation remains unknown. Thus, multi-omics strategies were applied to detect the phenolics profiles, contents, and screen the key genes for phenolics biosynthesis and regulation in asparagus. A total of 437 compounds, among which 204 phenolics including 105 flavonoids and 82 phenolic acids were detected with fluctuated concentrations in roots (Rs), spears (Ss) and flowering twigs (Fs) of the both green and purple cultivars. Based on the detected phenolics profiles and contents correlated to the gene expressions of screened synthetic enzymes and regulatory TFs, a full phenolics synthetic pathway of asparagus was proposed for the first time, essential for future breeding of asparagus and scaled healthy phenolics production using synthetic biological strategies.

6.
BMC Plant Biol ; 23(1): 207, 2023 Apr 20.
Article in English | MEDLINE | ID: mdl-37081391

ABSTRACT

BACKGROUND: Asparagus officinalis L. is a worldwide cultivated vegetable enrichened in both nutrient and steroidal saponins with multiple pharmacological activities. The upstream biosynthetic pathway of steroidal saponins (USSP) for cholesterol (CHOL) synthesis has been studied, while the downstream pathway of steroidal saponins (DSSP) starting from cholesterol and its regulation in asparagus remains unknown. RESULTS: Metabolomics, Illumina RNAseq, and PacBio IsoSeq strategies were applied to different organs of both cultivated green and purple asparagus to detect the steroidal metabolite profiles & contents and to screen their key genes for biosynthesis and regulation. The results showed that there is a total of 427 compounds, among which 18 steroids were detected with fluctuated concentrations in roots, spears and flowering twigs of two garden asparagus cultivars. The key genes of DSSP include; steroid-16-hydroxylase (S16H), steroid-22-hydroxylase (S22H) and steroid-22-oxidase-16-hydroxylase (S22O-16H), steroid-26-hydroxylase (S26H), steroid-3-ß-glycosyltransferase (S3ßGT) and furostanol glycoside 26-O-beta-glucosidases (F26GHs) which were correlated with the contents of major steroidal saponins were screened, and the transcriptional factors (TFs) co-expressing with the resulted from synthetic key genes, including zinc fingers (ZFs), MYBs and WRKYs family genes were also screened. CONCLUSIONS: Based on the detected steroidal chemical structures, profiles and contents which correlated to the expressions of screened synthetic and TFs genes, the full steroidal saponin synthetic pathway (SSP) of asparagus, including its key regulation networks was proposed for the first time.


Subject(s)
Asparagus Plant , Saponins , Transcriptome , Asparagus Plant/genetics , Metabolomics , Steroids , Vegetables/genetics , Vegetables/metabolism , Mixed Function Oxygenases/genetics
7.
Gene ; 862: 147284, 2023 Apr 30.
Article in English | MEDLINE | ID: mdl-36781027

ABSTRACT

The full length CDS of an A20 and AN1 type zinc finger gene (named AoSAP8-P), located nearby the male specific Y chromosome (MSY) region of Asparagus officinalis (garden asparagus) was amplified by RT-PCR from purple passion. This gene, predicted as the stress associated protein (SAPs) gene families, encodes 172 amino acids with multiple cis elements including light, stress response box, MYB and ERF binding sites on its promoter. To analyze its function, the gene expression of different organs in different asparagus gender were analyzed and the overexpressed transgenic Nicotiana sylvestris lines were generated. The results showed the gene was highly expressed in both flower and root of male garden asparagus; the germination rate of seeds of the T2 transgenic lines (T2-5-4 and T2-7-1) under the stress conditions of 125 mM NaCl and 150 mM mannitol were significantly higher than the wild type (WT) respectively. When the potted T2-5-4, T2-7-1 lines and WT were subjected to drought stress for 24 days and the leaf discs immerged into 20 % PEG6000 and 300 mM NaCl solution for 48 h respectively, the T2-5-4 and T2-7-1 with AoSAP8-P expression showed stronger drought, salt and osmotic stress tolerance. When compared, the effects of AoSAP8-P overexpression on productive development showed that the flowering time of transgenic lines, were âˆ¼ 9 day earlier with larger but fewer pollens than its WT counterparts. However, there were no significant differences in anthers, stigmas and pollen viability between the transgenic lines and WT. Our results suggested that, the AoSAP8-P gene plays a role in improving the stress resistance and shortening seeds generation time for perianal survival during the growth and development of garden asparagus.


Subject(s)
Asparagus Plant , Sodium Chloride , Sodium Chloride/pharmacology , Nicotiana/genetics , Asparagus Plant/genetics , Asparagus Plant/metabolism , Plant Proteins/genetics , Plants, Genetically Modified/genetics , Stress, Physiological/genetics , Zinc Fingers/genetics , Heat-Shock Proteins/genetics , Gene Expression Regulation, Plant , Droughts
8.
Article in English | MEDLINE | ID: mdl-35529936

ABSTRACT

Stephania epigaea, an important traditional folk medicinal plant, elucidating its bioactive compound profiles and their molecular mechanisms of action on human health, would better understand its traditional therapies and guide their use in preclinical and clinical. This study aims to detect the critical therapeutic compounds, predict their targets, and explore potential therapeutic molecular mechanisms. This work first determined metabolites from roots, stems, and flowering twigs of S. epigaea by a widely targeted metabolomic analysis assay. Then, the drug likeness of the compounds and their pharmacokinetic profiles were screened by the ADMETlab server. The target proteins of active compounds were further analyzed by PPI combing with GO and KEGG cluster enrichment analysis. Finally, the interaction networks between essential compounds, targets, and disease-associated pathways were constructed, and the essential compounds binding to their possible target proteins were verified by molecular docking. Five key target proteins (EGFR, HSP90AA1, SRC, TNF, and CASP3) and twelve correlated metabolites, including aknadinine, cephakicine, homostephanoline, and N-methylliriodendronine associated with medical applications of S. epigaea, were identified, and the compounds and protein interactions were verified. The key active ingredients are mainly accumulated in the root, which indicates that the root is the main medicinal tissue. This study demonstrated that S. epigaea might exert the desired disease efficacy mainly through twelve components interacting via five essential target proteins. EGFR is the most critical one, which deserves further verification by biological studies.

10.
Physiol Plant ; 166(3): 833-847, 2019 Jul.
Article in English | MEDLINE | ID: mdl-30357855

ABSTRACT

Tomato/potato heterografting-triggered phenotypic variations are well documented, yet the molecular mechanisms underlying grafting-induced phenotypic processes remain unknown. To investigate the phenotypic and transcriptomic responses of grafting parents in heterografting in comparison with self-grafting, tomato (Sl) was grafted onto potato rootstocks (St), and comparative phenotyping and transcriptome profiling were performed. Phenotypic analysis showed that Sl/St heterografting induced few phenotypic changes in the tomato scion. A total of 209 upregulated genes were identified in the tomato scion, some of which appear to be involved in starch and sucrose biosynthesis. Sl/St heterografting induced several modifications in the potato rootstocks (St-R), stolon number, stolon length and tuber number decreased significantly, together with an increase in GA3 content of stolon and tuber, compared with self-grafted potato (St-WT). These results indicate that the tomato scion is less effective at producing substances or signals to induce tuberization but promotes stolon development into aerial stems and sprouting. RNA-Seq data analysis showed that 1529 genes were upregulated and 1329 downregulated between St-WT and St-R; some of these genes are involved in plant hormone signal transduction, with GID1-like gibberellin receptor (StGID1) and DELLA protein (StDELLA) being upregulated. Several genes in auxin, abscisic acid and ethylene pathways were differentially expressed as well. Various hormone signals engage in crosstalk to regulate diverse phenotypic events after grafting. This work provides abundant transcriptome profile data and lays a foundation for further research on the molecular mechanisms underlying RNA-based interactions between rootstocks and scions after tomato/potato heterografting.


Subject(s)
Gene Expression Profiling/methods , Solanum lycopersicum/metabolism , Solanum tuberosum/metabolism , Gene Expression Regulation, Plant/genetics , Gene Expression Regulation, Plant/physiology , Solanum lycopersicum/genetics , Solanum lycopersicum/physiology , Plant Proteins/genetics , Plant Proteins/metabolism , Plant Tubers/genetics , Plant Tubers/metabolism , Plant Tubers/physiology , Solanum tuberosum/genetics , Solanum tuberosum/physiology , Transplantation, Heterologous
11.
Nat Commun ; 8(1): 1279, 2017 11 02.
Article in English | MEDLINE | ID: mdl-29093472

ABSTRACT

Sex chromosomes evolved from autosomes many times across the eukaryote phylogeny. Several models have been proposed to explain this transition, some involving male and female sterility mutations linked in a region of suppressed recombination between X and Y (or Z/W, U/V) chromosomes. Comparative and experimental analysis of a reference genome assembly for a double haploid YY male garden asparagus (Asparagus officinalis L.) individual implicates separate but linked genes as responsible for sex determination. Dioecy has evolved recently within Asparagus and sex chromosomes are cytogenetically identical with the Y, harboring a megabase segment that is missing from the X. We show that deletion of this entire region results in a male-to-female conversion, whereas loss of a single suppressor of female development drives male-to-hermaphrodite conversion. A single copy anther-specific gene with a male sterile Arabidopsis knockout phenotype is also in the Y-specific region, supporting a two-gene model for sex chromosome evolution.


Subject(s)
Arabidopsis/genetics , Asparagus Plant/genetics , Chromosomes, Plant/genetics , Sex Chromosomes/genetics , Sex Determination Processes/genetics , Evolution, Molecular , Genome, Plant , Hermaphroditic Organisms/genetics , Plant Infertility/genetics
12.
Microb Cell Fact ; 16(1): 59, 2017 Apr 07.
Article in English | MEDLINE | ID: mdl-28388915

ABSTRACT

BACKGROUND: This work evaluated the improvement of curdlan production of Agrobacterium sp. ATCC 31749 by using culture medium containing juice of discarded bottom part of green Asparagus spear (MJDA). Curdlan production was carried out using Agrobacterium sp. ATCC 31749 in flasks with different volumes of MJDA and its non-juice-adding control (CK) incubated in shaker at 30 °C, 200 rpm rotation for 168 h. RESULTS: All MJDA media increased Agrobacterium sp. ATCC 31749 cell mass and enhanced the cells' ability to utilise sucrose, the carbon source for curdlan biosynthesis, and thereby produced higher concentration of curdlan than CK which is used for commercial production of curdlan. After 168 h of fermentation, 10% MJDA produced 40.2 g/l of curdlan whiles CK produced 21.1 g/l. Curdlan production was increased by 90.4% higher in 10% MJDA than CK. Curdlan produced by 10% MJDA contains 1.2 and 1.5 µg/ml of Asparagus flavonoids and saponins respectively as additives which have wide range of health benefits. The mass of sucrose needed to produce 1.0 g curdlan by Agrobacterium sp. ATCC 31749 in CK is 1.7-fold more than in 10% MJDA. CONCLUSION: The results strongly revealed that 5-10% MJDA is a good curdlan fermentation media which increase curdlan production yield with cheaper cost of production and simultaneously reduce environmental waste resulting from the large scaled discarded bottom parts of green Asparagus spear during Asparagus production.


Subject(s)
Agrobacterium/metabolism , Asparagus Plant/metabolism , beta-Glucans/metabolism , Agrobacterium/cytology , Asparagus Plant/chemistry , Biomass , beta-Glucans/chemistry
13.
J Asian Nat Prod Res ; 19(2): 164-171, 2017 Feb.
Article in English | MEDLINE | ID: mdl-27618876

ABSTRACT

Two new phenolic acid compounds, asparoffin C (1) and asparoffin D (2), together with four known compounds, asparenyol (3), gobicusin B (4), 1-methoxy-2-hydroxy-4-[5-(4-hydroxyphenoxy)-3-penten-1-ynyl] phenol (5), and asparinin A (6), have been isolated from the stems of Asparagus officinalis. The structures were established by extensive spectroscopic methods (MS and 1D and 2D NMR). Compound 6 has obvious antitumor activities both in vitro and in vivo.


Subject(s)
Alkynes/isolation & purification , Alkynes/pharmacology , Asparagus Plant/chemistry , Phenols/isolation & purification , Phenols/pharmacology , Alkynes/chemistry , Molecular Structure , Nuclear Magnetic Resonance, Biomolecular , Phenols/chemistry
14.
J Asian Nat Prod Res ; 18(4): 344-8, 2016.
Article in English | MEDLINE | ID: mdl-26558641

ABSTRACT

Two new acetylenic compounds, asparoffins A (1) and B (2), together with two known compounds, nyasol (3) and 3″-methoxynyasol (4), were isolated from stems of Asparagus officinalis. The structures of two new compounds were elucidated on the basis of detailed spectroscopic analyses (UV, IR, MS, 1D, and 2D NMR). All compounds were evaluated for their cytotoxicities against three human cancer cell lines.


Subject(s)
Asparagus Plant/chemistry , Alkynes/chemistry , Humans , Lignans/chemistry , Molecular Structure , Nuclear Magnetic Resonance, Biomolecular , Phenols/chemistry , Plant Stems/chemistry
15.
BMC Microbiol ; 15: 25, 2015 Feb 10.
Article in English | MEDLINE | ID: mdl-25880528

ABSTRACT

BACKGROUND: Agrobacterium sp. ATCC31749 is an efficient curdlan producer at low pH and under nitrogen starvation. The helix-turn-helix transcriptional regulatory protein (crdR) essential for curdlan production has been analyzed, but whether crdR directly acts to cause expression of the curdlan biosynthesis operon (crdASC) is uncertain. To elucidate the molecular function of crdR in curdlan biosynthesis, we constructed a crdR knockout mutant along with pBQcrdR and pBQNcrdR vectors with crdR expression driven by a T5 promoter and crdR native promoter, respectively. Also, we constructed a pAG with the green fluorescent protein (GFP) gene driven by a curdlan biosynthetic operon promoter (crdP) to measure the effects of crdR expression on curdlan biosynthesis. RESULTS: Compared with wild-type (WT) strain biomass production, the biomass of the crdR knockout mutant was not significantly different in either exponential or stationary phases of growth. Mutant cells were non-capsulated and planktonic and produced significantly less curdlan. WT cells were curdlan-capsulated and aggregated in the stationery phase. pBQcrdR transformed to the WT strain had a 38% greater curdlan yield and pBQcrdR and pBQNcrdR transformed to the crdR mutant strain recovered 18% and 105% curdlan titers of the WT ATCC31749 strain, respectively. Consistent with its function of promoting curdlan biosynthesis, curdlan biosynthetic operon promoter (crdP) controlled GFP expression caused the transgenic strain to have higher GFP relative fluorescence in the WT strain, and no color change was observed with low GFP relative fluorescence in the crdR mutant strain as evidenced by fluorescent microscopy and spectrometric assay. q-RT-PCR revealed that crdR expression in the stationary phase was greater than in the exponential phase, and crdR overexpression in the WT strain increased crdA, crdS, and crdC expression. We also confirmed that purified crdR protein can specifically bind to the crd operon promoter region, and we inferred that crdR directly acts to cause expression of the curdlan biosynthesis operon (crdASC). CONCLUSIONS: CrdR is a positive transcriptional regulator of the crd operon for promoting curdlan biosynthesis in ATCC31749. The potential binding region of crdR is located within the -98 bp fragment upstream from the crdA start codon.


Subject(s)
Agrobacterium/genetics , Bacterial Proteins/genetics , Gene Expression Regulation, Bacterial , Promoter Regions, Genetic , beta-Glucans/metabolism , Agrobacterium/growth & development , Agrobacterium/metabolism , Bacterial Proteins/metabolism , Binding Sites , Codon/chemistry , Codon/metabolism , Gene Knockout Techniques , Genes, Reporter , Genetic Vectors/chemistry , Genetic Vectors/metabolism , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Hydrogen-Ion Concentration , Nitrogen/deficiency , Operon , Protein Binding , Transcription, Genetic
16.
Indian J Microbiol ; 54(4): 476-9, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25320450

ABSTRACT

Bacillus subtilis XF-1 has been used as a biocontrol agent of clubroot disease of crucifers infected by Plasmodiophora brassicae, an obligate pathogen. In order to maximize the growth inhibition of the pathogen, random mutagenesis using N-methyl-N'-nitro-N-nitrosoguanidine was applied to strain XF-1. The efficacy of 226 selected mutants was assessed against the growth of an indicator fungal pathogen: Fusarium solani using agar plate assay and the disruptive effects on the resting spores of P. brassicae. Four mutants exhibited inhibition activity significantly higher than the wild type. The cell extracts of these mutants and the XF-1 were subjected to matrix-assisted laser desorption ionization-time of flight mass spectra analysis, and three families of cyclic lipopeptides (CLPs) fengycin, surfactin and iturin were identified from the parental strain and the screened mutants. However, the relative contents and compound diversity changed after mutagenesis, and there was slight variation in the surfactin and fengycin. Notably, only 5 iturin components were discovered from the wild strain XF-1, but 13 were obtained from the mutant strains, and the relative CLPs contents of all mutant strains increased substantially. The results suggested that CLPs might be one of main biocontrol mechanisms of the clubroot disease by XF-1. The 4 mutants are far more effective than the parental strain, and they would be promising biocontrol candidates not only against P. brassicae but probably other plant diseases caused by fungi.

17.
Appl Biochem Biotechnol ; 170(4): 805-18, 2013 Jun.
Article in English | MEDLINE | ID: mdl-23613118

ABSTRACT

Zymomonas mobilis is the only known microorganism that utilizes the Entner-Doudoroff (ED) pathway anaerobically. In this work, we investigated whether the overexpression of a phosphofructokinase (PFK), the only missing Embden-Meyerhof-Parnas (EMP) pathway enzyme, could establish the pathway in this organism. Introduction of a pyrophosphate-dependent PFK, along with co-expression of homologous fructose-1,6-bisphosphate aldolase and triosephosphate isomerase, did not result in an EMP flux to any appreciable level. However, the metabolism of glucose was impacted significantly. Eight percent of glucose was metabolized to form a new metabolite, dihydroxyacetone. Reducing flux through the ED pathway by as much as 40 % through antisense of a key enzyme, ED aldolase, did not result in a fully functional EMP pathway, suggesting that the ED pathway, especially the lower arm, downstream from glyceraldehyde-3-phosphate, is very rigid, possibly due to redox balance.


Subject(s)
Diphosphates/analysis , Glucose/metabolism , Glycolysis , Zymomonas/enzymology , Bacterial Proteins/metabolism , Cloning, Molecular , Dihydroxyacetone/metabolism , Diphosphates/metabolism , Escherichia coli/genetics , Escherichia coli/metabolism , Fermentation , Fructose-Bisphosphate Aldolase/genetics , Fructose-Bisphosphate Aldolase/metabolism , Genes, Bacterial , Phosphofructokinases/genetics , Phosphofructokinases/metabolism , Triose-Phosphate Isomerase/genetics , Triose-Phosphate Isomerase/metabolism , Zymomonas/genetics
18.
Genome Announc ; 1(2): e0006613, 2013 Apr 04.
Article in English | MEDLINE | ID: mdl-23558530

ABSTRACT

The genome of the rhizobacterium Bacillus subtilis XF-1 is 4.06 Mb in size and harbors 3,853 coding sequences (CDS). Giant gene clusters were dedicated to the nonribosomal synthesis of antimicrobial lipopeptides and polyketides. Remarkably, XF-1 possesses a gene cluster involved in the synthesis of chitosanase that is related to the suppression of the pathogen Plasmodiophora brassicae.

19.
J Microbiol Biotechnol ; 23(3): 313-21, 2013 Mar.
Article in English | MEDLINE | ID: mdl-23462003

ABSTRACT

Bacillus subtilis XF-1, a strain with demonstrated ability to control clubroot disease caused by Plasmodiophora brassicae, was studied to elucidate its mechanism of antifungal activity against P. brassicae. Fengycin-type cyclopeptides (FTCPs), a well-known class of compounds with strong fungitoxic activity, were purified by acid precipitation, methanol extraction, and chromatographic separation. Eight homologs of fengycin, seven homologs of dehydroxyfengycin, and six unknown FTCPs were characterized with LC/ESI-MS, LC/ESI-MS/MS, and NMR. FTCPs (250 microg/ml) were used to treat the resting spores of P. brassicae (10(7)/ml) by detecting leakage of the cytoplasm components and cell destruction. After 12 h treatment, the absorbencies at 260 nm (A(260)) and at 280 nm (A(280)) increased gradually to approaching the maximum of absorbance, accompanying the collapse of P. brassicae resting spores, and nearly no complete cells were observed at 24 h treatment. The results suggested that the cells could be cleaved by the FTCPs of B. subtilis XF-1, and the diversity of FTCPs was mainly attributed to a mechanism of clubroot disease biocontrol.


Subject(s)
Antifungal Agents/chemistry , Antifungal Agents/pharmacology , Bacillus subtilis/chemistry , Lipopeptides/chemistry , Lipopeptides/pharmacology , Plasmodiophorida/drug effects , Antifungal Agents/isolation & purification , Chromatography, Liquid , Lipopeptides/isolation & purification , Magnetic Resonance Spectroscopy , Mass Spectrometry
20.
Appl Microbiol Biotechnol ; 97(18): 8129-38, 2013 Sep.
Article in English | MEDLINE | ID: mdl-23306638

ABSTRACT

Metabolic engineering has been successful in generating highly efficient Escherichia coli catalysts for production of biofuels and other useful products. However, most of these engineered biocatalysts are only effective when glucose is used as the starting substrate. Strategies to overcome this limitation in the past almost exclusively relied on extracellular secretion or surface display of a ß-glucosidase. We show here, for the first time, a periplasmic expression of a Sacchrophagus degradans cellodextrinase (Ced3A) as a successful strategy to enable E. coli to use cellodextrin. The engineered strain was able to grow with cellodextrin as sole carbon source. Additionally, we show that penetration of cellodextrin into periplasmic space was enhanced by using a mutant with leaky outer membrane. Furthermore, we demonstrate that the catalyst can efficiently ferment cellodextrin to lactic acid with about 80 % yield. The ability of a biocatalyst to use cellodextrin should make it useful in consolidated bioprocessing of cellulose.


Subject(s)
Alteromonadaceae/enzymology , Bacterial Proteins/genetics , Cellulase/genetics , Cellulose/analogs & derivatives , Dextrins/metabolism , Escherichia coli/genetics , Escherichia coli/metabolism , Periplasm/enzymology , Bacterial Proteins/metabolism , Cellulase/metabolism , Cellulose/metabolism , Fermentation , Gene Expression , Metabolic Engineering , Periplasm/genetics
SELECTION OF CITATIONS
SEARCH DETAIL