Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 126
Filter
1.
Neuropsychopharmacology ; 49(13): 1951-1957, 2024 Dec.
Article in English | MEDLINE | ID: mdl-39138373

ABSTRACT

The infralimbic (IL) division of the medial prefrontal cortex (mPFC) is a crucial site for the extinction of conditioned fear memories in rodents. Recent work suggests that neuronal plasticity in the IL that occurs during (or soon after) fear conditioning enables subsequent IL-dependent extinction learning. We therefore hypothesized that pharmacological activation of the IL after fear conditioning would promote the extinction of conditioned fear. To test this hypothesis, we characterized the effects of post-conditioning infusions of the GABAA receptor antagonist, picrotoxin, into the IL on the extinction of auditory conditioned freezing in male and female rats. In four experiments, we found that picrotoxin injections performed immediately, 24 h, or 13 days after fear conditioning reduced conditioned freezing to the auditory conditioned stimulus (CS) during both extinction training and extinction retrieval; this effect was observed up to two weeks after picrotoxin infusions. Interestingly, inhibiting protein synthesis inhibition in the IL immediately after fear conditioning prevented the inhibition of freezing by picrotoxin injected 24 h later. Our data suggest that the IL encodes an inhibitory memory during the consolidation of fear conditioning that is necessary for future fear suppression.


Subject(s)
Extinction, Psychological , Fear , Picrotoxin , Prefrontal Cortex , Animals , Fear/drug effects , Fear/physiology , Extinction, Psychological/drug effects , Extinction, Psychological/physiology , Male , Female , Picrotoxin/pharmacology , Prefrontal Cortex/drug effects , Prefrontal Cortex/physiology , Rats , Conditioning, Classical/drug effects , Conditioning, Classical/physiology , GABA-A Receptor Antagonists/pharmacology , Acoustic Stimulation , Rats, Sprague-Dawley , Freezing Reaction, Cataleptic/drug effects , Freezing Reaction, Cataleptic/physiology
2.
Neurobiol Stress ; 31: 100656, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38994219

ABSTRACT

Post-traumatic stress disorder (PTSD) is a debilitating disorder characterized by excessive fear, hypervigilance, and avoidance of thoughts, situations or reminders of the trauma. Among these symptoms, relatively little is known about the etiology of pathological avoidance. Here we sought to determine whether acute stress influences avoidant behavior in adult male and female rats. We used a stress procedure (unsignaled footshock) that is known to induce long-term sensitization of fear and potentiate aversive learning. Rats were submitted to the stress procedure and, one week later, underwent two-way signaled active avoidance conditioning (SAA). In this task, rats learn to prevent an aversive outcome (shock) by performing a shuttling response when exposed to a warning signal (tone). We found that acute stress significantly enhanced SAA acquisition rate in females, but not males. Female rats exhibited significantly greater avoidance responding on the first day of training relative to controls, reaching similar levels of performance by the second day. Males that underwent the stress procedure showed similar rates of acquisition to controls but exhibited resistance to extinction. This was manifest as both elevated avoidance and intertrial responding across extinction days relative to non-stressed controls, an effect that was not observed in females. In a second experiment, acute stress sensitized footshock unconditioned responses in males, not females. However, males and females exhibited similar levels of stress-enhanced fear learning (SEFL), which was expressed as sensitized freezing to a shock-paired context. Together, these results reveal that acute stress facilitates SAA performance in both male and female rats, though the nature of this effect is different in the two sexes. We did not observe sex differences in SEFL, suggesting that the stress-induced sex difference in performance was selective for instrumental avoidance. Future work will elucidate the neurobiological mechanisms underlying the differential effect of stress on instrumental avoidance in male and female rats.

3.
Adv Neurobiol ; 38: 45-66, 2024.
Article in English | MEDLINE | ID: mdl-39008010

ABSTRACT

Memories are not formed in a vacuum and often include rich details about the time and place in which events occur. Contextual stimuli promote the retrieval of events that have previously occurred in the encoding context and limit the retrieval of context-inappropriate information. Contexts that are associated with traumatic or harmful events both directly elicit fear and serve as reminders of aversive events associated with trauma. It has long been appreciated that the hippocampus is involved in contextual learning and memory and is central to contextual fear conditioning. However, little is known about the underlying neuronal mechanisms underlying the encoding and retrieval of contextual fear memories. Recent advancements in neuronal labeling methods, including activity-dependent tagging of cellular ensembles encoding memory ("engrams"), provide unique insight into the neural substrates of memory in the hippocampus. Moreover, these methods allow for the selective manipulation of memory ensembles. Attenuating or erasing fear memories may have considerable therapeutic value for patients with post-traumatic stress disorder or other trauma- or stressor-related conditions. In this chapter, we review the role of the hippocampus in contextual fear conditioning in rodents and explore recent work implicating hippocampal ensembles in the encoding and retrieval of aversive memories.


Subject(s)
Fear , Hippocampus , Memory , Hippocampus/physiology , Fear/physiology , Animals , Memory/physiology , Humans , Neurons/physiology
4.
bioRxiv ; 2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38746268

ABSTRACT

Post-traumatic stress disorder (PTSD) is a debilitating disorder characterized by excessive fear, hypervigilance, and avoidance of thoughts, situations or reminders of the trauma. Among these symptoms, relatively little is known about the etiology of pathological avoidance. Here we sought to determine whether acute stress influences avoidant behavior in adult male and female rats. We used a stress procedure (unsignaled footshock) that is known to induce long-term sensitization of fear and potentiate aversive learning. Rats were submitted to the stress procedure and, one week later, underwent two-way signaled active avoidance conditioning (SAA). In this task, rats learn to prevent an aversive outcome (shock) by performing a shuttling response when exposed to a warning signal (tone). We found that acute stress significantly enhanced SAA acquisition rate in females, but not males. Female rats exhibited significantly greater avoidance responding on the first day of training relative to controls, reaching similar levels of performance by the second day. Males that underwent the stress procedure showed similar rates of acquisition to controls but exhibited resistance to extinction. This was manifest as both elevated avoidance and intertrial responding across extinction days relative to non-stressed controls, an effect that was not observed in females. In a second experiment, acute stress sensitized footshock unconditioned responses in males, not females. However, males and females exhibited similar levels of stress-enhanced fear learning (SEFL), which was expressed as sensitized freezing to a shock-paired context. Together, these results reveal that acute stress facilitates SAA performance in both male and female rats, though the nature of this effect is different in the two sexes. We did not observe sex differences in SEFL, suggesting that the stress-induced sex difference in performance was selective for instrumental avoidance. Future work will elucidate the neurobiological mechanisms underlying the differential effect of stress on instrumental avoidance in male and female rats.

5.
Behav Brain Res ; 470: 115071, 2024 07 26.
Article in English | MEDLINE | ID: mdl-38806099

ABSTRACT

The hippocampus has a central role in regulating contextual processes in memory. We have shown that pharmacological inactivation of ventral hippocampus (VH) attenuates the context-dependence of signaled active avoidance (SAA) in rats. Here, we explore whether the VH mediates intertrial responses (ITRs), which are putative unreinforced avoidance responses that occur between trials. First, we examined whether VH inactivation would affect ITRs. Male rats underwent SAA training and subsequently received intra-VH infusions of saline or muscimol before retrieval tests in the training context. Rats that received muscimol performed significantly fewer ITRs, but equivalent avoidance responses, compared to controls. Next, we asked whether chemogenetic VH activation would increase ITR vigor. In male and female rats expressing excitatory (hM3Dq) DREADDs, systemic CNO administration produced a robust ITR increase that was not due to nonspecific locomotor effects. Then, we examined whether chemogenetic VH activation potentiated ITRs in an alternate (non-training) test context and found it did. Finally, to determine if context-US associations mediate ITRs, we exposed rats to the training context for three days after SAA training to extinguish the context. Rats submitted to context extinction did not show a reliable decrease in ITRs during a retrieval test, suggesting that context-US associations are not responsible for ITRs. Collectively, these results reveal an important role for the VH in context-dependent ITRs during SAA. Further work is required to explore the neural circuits and associative basis for these responses, which may be underlie pathological avoidance that occurs in humans after threat has passed.


Subject(s)
Avoidance Learning , Hippocampus , Muscimol , Animals , Avoidance Learning/physiology , Avoidance Learning/drug effects , Male , Hippocampus/physiology , Hippocampus/drug effects , Hippocampus/metabolism , Muscimol/pharmacology , Female , Rats , GABA-A Receptor Agonists/pharmacology , Rats, Long-Evans , Clozapine/pharmacology , Clozapine/analogs & derivatives
6.
bioRxiv ; 2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38585934

ABSTRACT

The infralimbic (IL) division of the medial prefrontal cortex (mPFC) is a crucial site for extinction of conditioned fear memories in rodents. Recent work suggests that neuronal plasticity in the IL that occurs during (or soon after) fear conditioning enables subsequent IL-dependent extinction learning. We therefore hypothesized that pharmacological activation of the IL after fear conditioning would promote the extinction of conditioned fear. To test this hypothesis, we characterized the effects of post-conditioning infusions of the GABAA receptor antagonist, picrotoxin, into the IL on extinction of auditory conditioned freezing in male and female rats. In four experiments, we found that picrotoxin injections performed immediately, 24 hours, or 13 days after fear conditioning reduced conditioned freezing to the auditory conditioned stimulus (CS) during both extinction training and extinction retrieval; this effect was observed up to two weeks after picrotoxin infusions. Interestingly, inhibiting protein synthesis inhibition in the IL immediately after fear conditioning prevented the inhibition of freezing by picrotoxin injected 24 hours later. Our data suggest that the IL encodes an inhibitory memory during the consolidation of fear conditioning that is necessary for future fear suppression.

7.
bioRxiv ; 2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38562746

ABSTRACT

The hippocampus has a central role in regulating contextual processes in memory. We have shown that pharmacological inactivation of ventral hippocampus (VH) attenuates the context-dependence of signaled active avoidance (SAA) in rats. Here, we explore whether the VH mediates intertrial responses (ITRs), which are putative unreinforced avoidance responses that occur between trials. First, we examined whether VH inactivation would affect ITRs. Male rats underwent SAA training and subsequently received intra-VH infusions of saline or muscimol before retrieval tests in the training context. Rats that received muscimol performed significantly fewer ITRs, but equivalent avoidance responses, compared to controls. Next, we asked whether chemogenetic VH activation would increase ITR vigor. In male and female rats expressing excitatory (hM3Dq) DREADDs, systemic CNO administration produced a robust ITR increase that was not due to nonspecific locomotor effects. Then, we examined whether chemogenetic VH activation potentiated ITRs in an alternate (non-training) test context and found it did. Finally, to determine if context-US associations mediate ITRs, we exposed rats to the training context for three days after SAA training to extinguish the context. Rats submitted to context extinction did not show a reliable decrease in ITRs during a retrieval test, suggesting that context-US associations are not responsible for ITRs. Collectively, these results reveal an important role for the VH in context-dependent ITRs during SAA. Further work is required to explore the neural circuits and associative basis for these responses, which may be underlie pathological avoidance that occurs in humans after threat has passed.

8.
Front Behav Neurosci ; 18: 1352797, 2024.
Article in English | MEDLINE | ID: mdl-38370858

ABSTRACT

The regulation of fear memories is critical for adaptive behaviors and dysregulation of these processes is implicated in trauma- and stress-related disorders. Treatments for these disorders include pharmacological interventions as well as exposure-based therapies, which rely upon extinction learning. Considerable attention has been directed toward elucidating the neural mechanisms underlying fear and extinction learning. In this review, we will discuss historic discoveries and emerging evidence on the neural mechanisms of the adaptive regulation of fear and extinction memories. We will focus on neural circuits regulating the acquisition and extinction of Pavlovian fear conditioning in rodent models, particularly the role of the medial prefrontal cortex and hippocampus in the contextual control of extinguished fear memories. We will also consider new work revealing an important role for the thalamic nucleus reuniens in the modulation of prefrontal-hippocampal interactions in extinction learning and memory. Finally, we will explore the effects of stress on this circuit and the clinical implications of these findings.

9.
Neuron ; 111(23): 3701-3702, 2023 Dec 06.
Article in English | MEDLINE | ID: mdl-38061328

ABSTRACT

Neurons have a central role in memory formation, but emerging work points to the critical role that non-neuronal cells play in this process. In this issue of Neuron, Pandey and colleagues1 show that hippocampal neurons communicate with vascular pericytes during memory consolidation. Through this dialogue, pericyte-derived growth factors support long-term memory.


Subject(s)
Memory Consolidation , Pericytes , Pericytes/metabolism , Hippocampus , Memory, Long-Term , Neurons/physiology
10.
Nat Commun ; 14(1): 6565, 2023 10 17.
Article in English | MEDLINE | ID: mdl-37848425

ABSTRACT

Traumatic events result in vivid and enduring fear memories. Suppressing the retrieval of these memories is central to behavioral therapies for pathological fear. The medial prefrontal cortex (mPFC) and hippocampus (HPC) have been implicated in retrieval suppression, but how mPFC-HPC activity is coordinated during extinction retrieval is unclear. Here we show that after extinction training, coherent theta oscillations (6-9 Hz) in the HPC and mPFC are correlated with the suppression of conditioned freezing in male and female rats. Inactivation of the nucleus reuniens (RE), a thalamic hub interconnecting the mPFC and HPC, reduces extinction-related Fos expression in both the mPFC and HPC, dampens mPFC-HPC theta coherence, and impairs extinction retrieval. Conversely, theta-paced optogenetic stimulation of RE augments fear suppression and reduces relapse of extinguished fear. Collectively, these results demonstrate a role for RE in coordinating mPFC-HPC interactions to suppress fear memories after extinction.


Subject(s)
Fear , Midline Thalamic Nuclei , Rats , Male , Female , Animals , Midline Thalamic Nuclei/physiology , Rats, Long-Evans , Fear/physiology , Prefrontal Cortex/physiology , Hippocampus/physiology , Extinction, Psychological/physiology
11.
J Neurosci ; 43(22): 4162-4173, 2023 05 31.
Article in English | MEDLINE | ID: mdl-37127359

ABSTRACT

Stress has profound effects on fear extinction, a form of learning that is essential to behavioral therapies for trauma-related and stressor-related disorders. Recent work reveals that acute footshock stress reduces medial prefrontal cortex (mPFC) activity that is critical for extinction learning. Reductions in mPFC activity may be mediated by parvalbumin (PV)-containing interneurons via feedforward inhibition imposed by amygdala afferents. To test this hypothesis, footshock stress-induced Fos expression was characterized in PV+ and PV- neurons in the prelimbic (PL) and infralimbic (IL) cortices. Footshock stress increased the proportion of PV+ cells expressing Fos in both male and female rats; this effect was more pronounced in IL compared with PL. To determine whether PV+ interneurons in the mPFC mediate stress-induced extinction impairments, we chemogenetically silenced these neurons before an immediate extinction procedure in PV-Cre rats. Clozapine-N-oxide (CNO) did not affect conditioned freezing during the extinction procedure. However, CNO exacerbated extinction retrieval in both male and female rats with relatively high PL expression of designer receptors exclusively activated by designer drugs (DREADD). In contrast, in rats with relatively high IL DREADD expression, CNO produced a modest facilitation of extinction in the earliest retrieval trials, but in male rats only. Conversely, excitation of IL PV interneurons was sufficient to impair delayed extinction in both male and female rats. Finally, chemogenetic inhibition of IL-projecting amygdala neurons reduced the immediate extinction deficit in male, but not female rats. These results reveal that PV interneurons regulate extinction learning under stress in a sex-dependent manner, and this effect is mediated by amygdaloprefrontal projections.SIGNIFICANCE STATEMENT Stress significantly impairs the memory of fear extinction, a type of learning that is central to behavioral therapies for trauma-based and anxiety-based disorders (e.g., post-traumatic stress disorder). Here we show that acute footshock stress recruits parvalbumin (PV) interneurons in the medial prefrontal cortex (mPFC) of male and female rats. Silencing mPFC PV interneurons or mPFC-projecting amygdala neurons during immediate extinction influenced extinction retrieval in a sex-dependent manner. This work highlights the role for PV-containing mPFC interneurons in stress-induced impairments in extinction learning.


Subject(s)
Fear , Parvalbumins , Rats , Animals , Male , Fear/physiology , Parvalbumins/metabolism , Extinction, Psychological/physiology , Interneurons/metabolism , Prefrontal Cortex/physiology
12.
Neuropsychopharmacology ; 48(4): 605-614, 2023 03.
Article in English | MEDLINE | ID: mdl-36056107

ABSTRACT

The basolateral amygdala (BLA) complex receives dense cholinergic projections from the nucleus basalis of Meynert (NBM) and the horizontal limb of the diagonal band of Broca (HDB). The present experiments examined whether these projections regulate the formation, extinction, and renewal of fear memories. This was achieved by employing a Pavlovian fear conditioning protocol and optogenetics in transgenic rats. Silencing NBM projections during fear conditioning weakened the fear memory produced by that conditioning and abolished its renewal after extinction. By contrast, silencing HDB projections during fear conditioning had no effect. Silencing NBM or HDB projections during extinction enhanced the loss of fear produced by extinction, but only HDB silencing prevented renewal. Next, we found that systemic blockade of nicotinic acetylcholine receptors during fear conditioning mimicked the effects produced by silencing NBM projections during fear conditioning. However, this blockade had no effect when given during extinction. These findings indicate that basal forebrain cholinergic signaling in the BLA plays a critical role in fear regulation by promoting strength and durability of fear memories. We concluded that cholinergic compounds may improve treatments for post-traumatic stress disorder by durably stripping fear memories from their fear-eliciting capacity.


Subject(s)
Basal Forebrain , Basolateral Nuclear Complex , Rats , Animals , Fear/physiology , Conditioning, Classical , Cholinergic Agents/pharmacology , Extinction, Psychological
13.
Front Behav Neurosci ; 16: 936036, 2022.
Article in English | MEDLINE | ID: mdl-35846784

ABSTRACT

Fear and anxiety-based disorders are highly debilitating and among the most prevalent psychiatric disorders. These disorders are associated with abnormal network oscillations in the brain, yet a comprehensive understanding of the role of network oscillations in the regulation of aversively motivated behavior is lacking. In this review, we examine the oscillatory correlates of fear and anxiety with a particular focus on rhythms in the theta and gamma-range. First, we describe neural oscillations and their link to neural function by detailing the role of well-studied theta and gamma rhythms to spatial and memory functions of the hippocampus. We then describe how theta and gamma oscillations act to synchronize brain structures to guide adaptive fear and anxiety-like behavior. In short, that hippocampal network oscillations act to integrate spatial information with motivationally salient information from the amygdala during states of anxiety before routing this information via theta oscillations to appropriate target regions, such as the prefrontal cortex. Moreover, theta and gamma oscillations develop in the amygdala and neocortical areas during the encoding of fear memories, and interregional synchronization reflects the retrieval of both recent and remotely encoded fear memories. Finally, we argue that the thalamic nucleus reuniens represents a key node synchronizing prefrontal-hippocampal theta dynamics for the retrieval of episodic extinction memories in the hippocampus.

14.
Learn Mem ; 29(8): 216-222, 2022 08.
Article in English | MEDLINE | ID: mdl-35902273

ABSTRACT

Recent data reveal that the thalamic nucleus reuniens (RE) has a critical role in the extinction of conditioned fear. Muscimol (MUS) infusions into the RE impair within-session extinction of conditioned freezing and result in poor long-term extinction memories in rats. Although this suggests that RE inactivation impairs extinction learning, it is also possible that it is involved in the consolidation of extinction memories. To examine this possibility, we examined the effects of RE inactivation on the consolidation and reconsolidation of fear extinction in male and female rats. Twenty-four hours after auditory fear conditioning, rats underwent an extinction procedure (45 CS-alone trials) in a novel context and were infused with saline (SAL) or MUS within minutes of the final extinction trial. Twenty-four hours later, conditioned freezing to the extinguished CS was assessed in the extinction context. Postextinction inactivation of the RE did not affect extinction retrieval. In a second experiment, rats underwent extinction training and, 24 h later, were presented with a single CS to reactivate the extinction memory; rats were infused with SAL or MUS immediately after the reactivation session. Pharmacological inactivation of the RE did not affect conditioned freezing measured in a drug-free retrieval test the following day. Importantly, we found in a subsequent test that MUS infusions immediately before retrieval testing increased conditioned freezing and impaired extinction retrieval, as we have previously reported. These results indicate that although RE inactivation impairs the expression of extinction, it does not impair either the consolidation or reconsolidation of extinction memories. We conclude that the RE may have a critical role in suppressing context-inappropriate fear memories in the extinction context.


Subject(s)
Fear , Midline Thalamic Nuclei , Animals , Extinction, Psychological/physiology , Fear/physiology , Female , Learning/physiology , Male , Memory/physiology , Midline Thalamic Nuclei/physiology , Rats
15.
PLoS One ; 17(6): e0264797, 2022.
Article in English | MEDLINE | ID: mdl-35687598

ABSTRACT

Extinction learning is central to exposure-based behavioral therapies for reducing fear and anxiety in humans. However, patients with fear and anxiety disorders are often resistant to extinction. Moreover, trauma and stress-related disorders are highly prone to relapse and are twice as likely to occur in females compared to males, suggesting that females may be more susceptible to extinction deficits and fear relapse phenomena. In this report, we tested this hypothesis by examining sex differences in a stress-induced extinction learning impairment, the immediate extinction deficit (IED), and renewal, a common form of fear relapse. In contrast to our hypothesis, there were no sex differences in the magnitude of the immediate extinction deficit in two different rat strains (Long-Evans and Wistar). However, we did observe a sex difference in the renewal of fear when the extinguished conditioned stimulus was presented outside the extinction context. Male Wistar rats exhibited significantly greater renewal than female rats, a sex difference that has previously been reported after appetitive extinction. Collectively, these data reveal that stress-induced extinction impairments are similar in male and female rats, though the context-dependence of extinction is more pronounced in males.


Subject(s)
Extinction, Psychological , Sex Characteristics , Animals , Fear , Female , Humans , Male , Rats , Rats, Long-Evans , Rats, Wistar , Recurrence
16.
Front Syst Neurosci ; 16: 888461, 2022.
Article in English | MEDLINE | ID: mdl-35520882

ABSTRACT

Therapeutic interventions for disorders of fear and anxiety rely on behavioral approaches that reduce pathological fear memories. For example, learning that threat-predictive stimuli are no longer associated with aversive outcomes is central to the extinction of conditioned fear responses. Unfortunately, fear memories are durable, long-lasting, and resistant to extinction, particularly under high levels of stress. This is illustrated by the "immediate extinction deficit," which is characterized by a poor long-term reduction of conditioned fear when extinction procedures are attempted within hours of fear conditioning. Here, I will review recent work that has provided new insight into the neural mechanisms underlying resistance to fear extinction. Emerging studies reveal that locus coeruleus norepinephrine modulates amygdala-prefrontal cortical circuits that are critical for extinction learning. These data suggest that stress-induced activation of brain neuromodulatory systems biases fear memory at the expense of extinction learning. Behavioral and pharmacological strategies to reduce stress in patients undergoing exposure therapy might improve therapeutic outcomes.

17.
Psychoneuroendocrinology ; 141: 105776, 2022 07.
Article in English | MEDLINE | ID: mdl-35489312

ABSTRACT

The increased susceptibility of women to stress and trauma-related disorders compared to men suggests a role for ovarian hormones in modulating fear and anxiety. In both humans and rodents, estrogen and progesterone have been shown to influence fear learning during acquisition, expression, and extinction. Recently, we showed that allopregnanolone (ALLO), a progesterone (PROG) metabolite and GABAA receptor potentiator, confers state-dependent contextual fear when infused into the bed nucleus of the stria terminalis of male rats. In order to determine whether estrous cycle-related fluctuations in circulating PROG confer state-dependent contextual fear in female rats, animals received Pavlovian fear conditioning during an estrous cycle phase when PROG was either low (late diestrus) or high (late proestrus). After conditioning, animals were tested for contextual fear in either the same or different estrous cycle phase. Subjects conditioned in diestrus and tested in proestrus showed lower levels of contextual fear compared to subjects conditioned and tested in the same estrous cycle phase (either diestrus or proestrus), suggesting a state-dependent effect of estrous cycle phase on fear learning. This state dependence was asymmetric, however, as animals trained in proestrus and tested in diestrus exhibited high levels of contextual fear. In ovariectomized (OVX) females treated acutely with either PROG or vehicle, state dependence was not observed. These results suggest that the hormonal state in diestrus may play a role in conferring state dependence to conditioned fear in naturally cycling female rats but not in an OVX model.


Subject(s)
Fear , Progesterone , Animals , Conditioning, Classical , Estrogens/pharmacology , Estrous Cycle , Female , Humans , Male , Progesterone/metabolism , Rats
18.
Biol Psychiatry ; 91(9): 832-840, 2022 05 01.
Article in English | MEDLINE | ID: mdl-35246314

ABSTRACT

BACKGROUND: In both rodents and humans, the basolateral amygdala (BLA) is essential for encoding and retrieving conditioned fear memories. Although the BLA is a putative storage site for these memories, recent evidence suggests that they become independent of the BLA with the passage of time. METHODS: We systematically examined the role for the BLA in the retrieval of recent (1 day) and remote (2 weeks) fear memory using optogenetic, electrophysiological, and calcium imaging methods in male and female Long-Evans rats. Critically, we used a behavioral design that permits within-subjects comparison of recent and remote memory at the same time point; freezing behavior served as the index of learned fear. RESULTS: We found that BLA c-Fos expression was similar after the retrieval of recent or remote fear memories. Extracellular single-unit recordings in awake, behaving animals revealed that single BLA neurons exhibit robust increases in spike firing to both recent and remote conditioned stimuli. Fiber photometry recordings revealed that these patterns of activity emerge from principal neurons. Consistent with these results, optogenetic inhibition of BLA principal neurons impaired conditioned freezing to both recent and remote conditioned stimuli. There were no sex differences in any of the measures or manipulations. CONCLUSIONS: These data reveal that BLA neurons encode both recent and remote fear memories, suggesting substantial overlap in the allocation of temporally distinct events. This may underlie the broad generalization of fear memories across both space and time. Ultimately, these results provide evidence that the BLA is a long-term storage site for emotional memories.


Subject(s)
Basolateral Nuclear Complex , Amygdala/physiology , Animals , Basolateral Nuclear Complex/physiology , Fear/physiology , Female , Humans , Male , Memory, Long-Term , Rats , Rats, Long-Evans
19.
Neurobiol Learn Mem ; 183: 107458, 2021 09.
Article in English | MEDLINE | ID: mdl-34015439

ABSTRACT

Considerable work indicates that instrumental responding is context-dependent, but the neural mechanisms underlying this phenomenon are poorly understood. Given the important role for the hippocampal formation in contextual processing, we hypothesized that reversible inactivation of the hippocampus would impair the context-dependence of active avoidance. To test this hypothesis, we used a two-way signaled active avoidance (SAA) task that requires rats to shuttle across a divided chamber during a tone CS in order to avoid a footshock US. After training, avoidance responding was assessed in an extinction test in both the training context and a novel context in a counterbalanced order. Rats performed significantly more avoidance responses in the training context than in the novel context, demonstrating the context-dependence of shuttle avoidance behavior. To examine the role of the hippocampus in the context-dependence of SAA, we reversibly inactivated either the dorsal (DH) or ventral hippocampus (VH) prior to testing. Inactivation of the VH eliminated the context-dependence of SAA and elevated avoidance responding in the novel context to levels similar to that expressed in the training context. In contrast, DH inactivation had no effect on avoidance in either context, and neither manipulation affected freezing behavior. Therefore, the integrity of the VH, but not DH, is required for the expression of the context-dependence of avoidance behavior.


Subject(s)
Avoidance Learning/physiology , Hippocampus/physiology , Animals , Avoidance Learning/drug effects , Conditioning, Classical/drug effects , Conditioning, Classical/physiology , Freezing Reaction, Cataleptic/physiology , GABA-A Receptor Agonists/pharmacology , Hippocampus/drug effects , Male , Muscimol/pharmacology , Rats
20.
Sci Rep ; 11(1): 8215, 2021 04 15.
Article in English | MEDLINE | ID: mdl-33859260

ABSTRACT

Environmental contexts can inform animals of potential threats, though it is currently unknown how context biases the selection of defensive behavior. Here we investigated context-dependent flight responses with a Pavlovian serial-compound stimulus (SCS) paradigm that evokes freeze-to-flight transitions. Similar to previous work in mice, we show that male and female rats display context-dependent flight-like behavior in the SCS paradigm. Flight behavior was dependent on contextual fear insofar as it was only evoked in a shock-associated context and was reduced in the conditioning context after context extinction. Flight behavior was only expressed to white noise regardless of temporal order within the compound. Nonetheless, rats that received unpaired SCS trials did not show flight-like behavior to the SCS, indicating it is associative. Finally, we show that pharmacological inactivation of two brain regions critical to the expression of contextual fear, the central nucleus of the amygdala (CeA) and bed nucleus of the stria terminalis (BNST), attenuates both contextual fear and flight responses. All of these effects were similar in male and female rats. This work demonstrates that contextual fear can summate with cued and innate fear to drive a high fear state and transition from post-encounter to circa-strike defensive modes.


Subject(s)
Behavior, Animal/physiology , Brain/physiology , Conditioning, Classical , Escape Reaction , Acoustic Stimulation , Amygdala/drug effects , Animals , Behavior, Animal/drug effects , Brain/anatomy & histology , Brain/drug effects , Conditioning, Classical/drug effects , Conditioning, Classical/physiology , Cues , Escape Reaction/drug effects , Escape Reaction/physiology , Fear , Female , Male , Muscimol/pharmacology , Rats , Rats, Long-Evans , Septal Nuclei/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL