Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
Add more filters








Publication year range
1.
J Orthop Res ; 42(3): 518-530, 2024 03.
Article in English | MEDLINE | ID: mdl-38102985

ABSTRACT

Musculoskeletal infections (MSKI), which are a major problem in orthopedics, occur when the pathogen eludes or overwhelms the host immune system. While effective vaccines and immunotherapies to prevent and treat MSKI should be possible, fundamental knowledge gaps in our understanding of protective, nonprotective, and pathogenic host immunity are prohibitive. We also lack critical knowledge of how host immunity is affected by the microbiome, implants, prior infection, nutrition, antibiotics, and concomitant therapies, autoimmunity, and other comorbidities. To define our current knowledge of these critical topics, a Host Immunity Section of the 2023 Orthopaedic Research Society MSKI International Consensus Meeting (ICM) proposed 78 questions. Systematic reviews were performed on 15 of these questions, upon which recommendations with level of evidence were voted on by the 72 ICM delegates, and another 12 questions were voted on with a recommendation of "Unknown" without systematic reviews. Two questions were transferred to another ICM Section, and the other 45 were tabled for future consideration due to limitations of available human resources. Here we report the results of the voting with internet access to the questions, recommendations, and rationale from the systematic reviews. Eighteen questions received a consensus vote of ≥90%, while nine recommendations failed to achieve this threshold. Commentary on why consensus was not achieved on these questions and potential ways forward are provided to stimulate specific funding mechanisms and research on these critical MSKI host defense questions.


Subject(s)
Orthopedic Procedures , Orthopedics , Humans , Consensus , Anti-Bacterial Agents/therapeutic use , Immunotherapy
2.
J Orthop Res ; 42(3): 512-517, 2024 03.
Article in English | MEDLINE | ID: mdl-38146070

ABSTRACT

Antimicrobial strategies for musculoskeletal infections are typically first developed with in vitro models. The In Vitro Section of the 2023 Orthopedic Research Society Musculoskeletal Infection international consensus meeting (ICM) probed our state of knowledge of in vitro systems with respect to bacteria and biofilm phenotype, standards, in vitro activity, and the ability to predict in vivo efficacy. A subset of ICM delegates performed systematic reviews on 15 questions and made recommendations and assessment of the level of evidence that were then voted on by 72 ICM delegates. Here, we report recommendations and rationale from the reviews and the results of the internet vote. Only two questions received a ≥90% consensus vote, emphasizing the disparate approaches and lack of established consensus for in vitro modeling and interpretation of results. Comments on knowledge gaps and the need for further research on these critical MSKI questions are included.


Subject(s)
Biofilms , Consensus
3.
Infect Immun ; 91(10): e0024623, 2023 10 17.
Article in English | MEDLINE | ID: mdl-37732789

ABSTRACT

Chronic infections are a heavy burden on healthcare systems worldwide. Persister cells are thought to be largely responsible for chronic infection due to their tolerance to antimicrobials and recalcitrance to innate immunity factors. Pseudomonas aeruginosa is a common and clinically relevant pathogen that contains stereotypical persister cells. Despite their importance in chronic infection, there have been limited efforts to study persister cell infections in vivo. Drosophila melanogaster has a well-described innate immune response similar to that of vertebrates and is a good candidate for the development of an in vivo model of infection for persister cells. Similar to what is observed in other bacterial strains, in this work we found that infection with P. aeruginosa persister cells resulted in a delayed mortality phenotype in Caenorhabditis elegans, Arabidopsis thaliana, and D. melanogaster compared to infection with regular cells. An in-depth characterization of infected D. melanogaster found that bacterial loads differed between persister and regular cells' infections during the early stages. Furthermore, hemocyte activation and antimicrobial peptide expression were delayed/reduced in persister infections over the same time course, indicating an initial suppression of, or inability to elicit, the fly immune response. Overall, our findings support the use of D. melanogaster as a model in which to study persister cells in vivo, where this bacterial subpopulation exhibits delayed virulence and an attenuated immune response.


Subject(s)
Anti-Infective Agents , Drosophila melanogaster , Animals , Drosophila melanogaster/microbiology , Pseudomonas aeruginosa/physiology , Persistent Infection , Anti-Infective Agents/metabolism , Immunity, Innate , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/metabolism
4.
Biofouling ; 39(5): 565-578, 2023.
Article in English | MEDLINE | ID: mdl-37455476

ABSTRACT

Atopic dermatitis (AD) is a chronic inflammatory skin disease where patients are more susceptible to infection and inflammation. The most salient symptoms of atopic dermatitis (AD) are skin dysbiosis and ceramide deficiency. Here, the effect of AD conditions on S. aureus resilience was investigated. S. aureus and S. epidermidis biofilms were co-inoculated at healthy and AD bacterial ratios and exposed to various sphingosine dosing regimens. In both healthy (S. epidermidis dominant) and AD (S. aureus dominant) conditions the viability of the non-dominant bacterial species was affected. Quorum sensing (QS)-impaired S. aureus was overall more susceptible to sphingosine. Despite the general resilience of QS-intact S. aureus against sphingosine, modulation of S. epidermidis (healthy ratio) and sphingosine (healthy Sph) led to a lack of recovery from its initial killing. Overall, it was found that when in biofilms, S. epidermidis increases S. aureus resilience to sphingosine, possibly enhancing the pathogen's recalcitrance in AD skin.

5.
Microorganisms ; 11(6)2023 May 27.
Article in English | MEDLINE | ID: mdl-37374921

ABSTRACT

Consumed food travels through the gastrointestinal tract to reach the small intestine, where it interacts with the microbiota, forming a complex relationship with the dietary components. Here we present a complex in vitro cell culture model of the small intestine that includes human cells, digestion, a simulated meal, and a microbiota represented by a bacterial community consisting of E. coli, L. rhamnosus, S. salivarius, B. bifidum, and E. faecalis. This model was used to determine the effects of food-grade titanium dioxide nanoparticles (TiO2 NPs), a common food additive, on epithelial permeability, intestinal alkaline phosphatase activity, and nutrient transport across the epithelium. Physiologically relevant concentrations of TiO2 had no effect on intestinal permeability but caused an increase in triglyceride transport as part of the food model, which was reversed in the presence of bacteria. Individual bacterial species had no effect on glucose transport, but the bacterial community increased glucose transport, suggesting a change in bacterial behavior when in a community. Bacterial entrapment within the mucus layer was reduced with TiO2 exposure, which may be due to decreased mucus layer thickness. The combination of human cells, a synthetic meal, and a bacterial mock community provides an opportunity to understand the implications of nutritional changes on small intestinal function, including the microbiota.

6.
Antioxidants (Basel) ; 12(2)2023 Feb 09.
Article in English | MEDLINE | ID: mdl-36829990

ABSTRACT

Among food additive metal oxide nanoparticles (NP), titanium dioxide (TiO2) and silicon dioxide (SiO2) are commonly used as food coloring or anti-caking agents, while zinc oxide (ZnO) and iron oxide (Fe2O3) are added as antimicrobials and coloring agents, respectively, and can be used as micronutrient supplements. To elucidate potential perturbations associated with NP consumption on gastrointestinal health and development, this in vivo study utilized the Gallus gallus (broiler chicken) intraamniotic administration to assess the effects of physiologically relevant concentrations of food-grade metal oxide NP on brush border membrane (BBM) functionality, intestinal morphology and intestinal microbial populations in vivo. Six groups with 1 mL injection of the following treatments were utilized: non-injected, 18 MΩ DI H2O; 1.4 × 10-6 mg TiO2 NP/mL, 2.0 × 10-5 mg SiO2 NP/mL, 9.7 × 10-6 mg ZnO NP/mL, and 3.8 × 10-4 mg Fe2O3 NP/mL (n = 10 per group). Upon hatch, blood, cecum, and duodenum were collected to assess mineral (iron and zinc) metabolism, BBM functional, and pro-inflammatory-related protein gene expression, BBM morphometric analysis, and the relative abundance of intestinal microflora. Food additive NP altered mineral transporter, BBM functionality, and pro-inflammatory cytokine gene expression, affected intestinal BBM development and led to compositional shifts in intestinal bacterial populations. Our results suggest that food-grade TiO2 and SiO2 NP have the potential to negatively affect intestinal functionality; food-grade ZnO NP exposure effects were associated with supporting intestinal development or compensatory mechanisms due to intestinal damage, and food-grade Fe2O3 NP was found to be a possible option for iron fortification, though with potential alterations in intestinal functionality and health.

7.
ACS Biomater Sci Eng ; 8(7): 2825-2848, 2022 07 11.
Article in English | MEDLINE | ID: mdl-35696291

ABSTRACT

Mucus layers (McLs) are on the front line of the human defense system that protect us from foreign abiotic/biotic particles (e.g., airborne virus SARS-CoV-2) and lubricates our organs. Recently, the impact of McLs on human health (e.g., nutrient absorption and drug delivery) and diseases (e.g., infections and cancers) has been studied extensively, yet their mechanisms are still not fully understood due to their high variety among organs and individuals. We characterize these variances as the heterogeneity of McLs, which lies in the thickness, composition, and physiology, making the systematic research on the roles of McLs in human health and diseases very challenging. To advance mucosal organoids and develop effective drug delivery systems, a comprehensive understanding of McLs' heterogeneity and how it impacts mucus physiology is urgently needed. When the role of airway mucus in the penetration and transmission of coronavirus (CoV) is considered, this understanding may also enable a better explanation and prediction of the CoV's behavior. Hence, in this Review, we summarize the variances of McLs among organs, health conditions, and experimental settings as well as recent advances in experimental measurements, data analysis, and model development for simulations.


Subject(s)
COVID-19 , Drug Delivery Systems , Humans , Mucus/physiology , SARS-CoV-2
8.
Microbiol Spectr ; 10(3): e0274421, 2022 06 29.
Article in English | MEDLINE | ID: mdl-35532353

ABSTRACT

Atopic dermatitis (AD) is associated with a deficiency of skin lipids, increased populations of Staphylococcus aureus in the microbiome, and structural defects in the stratum corneum (SC), the outermost layer of human skin. However, the pathogenesis of AD is ambiguous, as it is unclear whether observed changes are the result of AD or contribute to the pathogenesis of the disease. Previous studies have shown that S. aureus is capable of permeating across isolated human SC tissue when lipids are depleted to levels consistent with AD conditions. In this study, we expand upon this discovery to determine the mechanisms and implications of bacterial penetration into the SC barrier. Specifically, we establish if bacteria are permeating intercellularly or employing a combination of both inter- and intracellular travel. The mechanical implications of bacterial invasion, lipid depletion, and media immersion are also evaluated using a newly developed, physiologically relevant, temperature-controlled drip chamber. Results reveal for the first time that S. aureus can be internalized by corneocytes, indicating transcellular movement through the tissue during permeation, consistent with previous theoretical models. S. aureus also degrades the mechanical integrity of human SC, particularly when the tissue is partially depleted of lipids. These observed mechanical changes are likely the cause of broken or ruptured tissue seen as exudative lesions in AD flares. This work further highlights the necessity of lipids in skin microbial barrier function. IMPORTANCE Millions of people suffer from the chronic inflammatory skin disease atopic dermatitis (AD), whose symptoms are associated with a deficiency of skin lipids that exhibit antimicrobial functions and increased populations of the opportunistic pathogen Staphylococcus aureus. However, the pathogenesis of AD is ambiguous, and it remains unclear if these observed changes are merely the result of AD or contribute to the pathogenesis of the disease. In this article, we demonstrate the necessity of skin lipids in preventing S. aureus from penetrating the outermost barrier of human skin, thereby causing a degradation in tissue integrity. This bacterial permeation into the viable epidermis could act as an inflammatory trigger of the disease. When coupled with delipidated AD tissue conditions, bacterial permeation can also explain increased tissue fragility, potentially causing lesion formation in AD patients that results in further enhancing bacterial permeability across the stratum corneum and the development of chronic conditions.


Subject(s)
Dermatitis, Atopic , Staphylococcal Infections , Dermatitis, Atopic/metabolism , Dermatitis, Atopic/microbiology , Epidermis/chemistry , Epidermis/metabolism , Epidermis/microbiology , Humans , Lipids/analysis , Skin/microbiology , Staphylococcus aureus/physiology
9.
Environ Sci Nano ; 9(12): 4540-4557, 2022 Dec 01.
Article in English | MEDLINE | ID: mdl-36874593

ABSTRACT

The effects of nanoparticles (NPs) on the human gut microbiota are of high interest due to the link between the gut homeostasis and overall human health. The human intake of metal oxide NPs has increased due to its use in the food industry as food additives. Specifically, magnesium oxide nanoparticles (MgO-NPs) have been described as antimicrobial and antibiofilm. Therefore, in this work we investigated the effects of the food additive MgO-NPs, on the probiotic and commensal Gram-positive Lactobacillus rhamnosus GG and Bifidobacterium bifidum VPI 1124. The physicochemical characterization showed that food additive MgO is formed by nanoparticles (MgO-NPs) and after a simulated digestion, MgO-NPs partially dissociate into Mg2+. Moreover, nanoparticulate structures containing magnesium were found embedded in organic material. Exposures to MgO-NPs for 4 and 24 hours increased the bacterial viability of both L. rhamnosus and B. bifidum when in biofilms but not when as planktonic cells. High doses of MgO-NPs significantly stimulated the biofilm development of L. rhamnosus, but not B. bifidum. It is likely that the effects are primarily due to the presence of ionic Mg2+. Evidence from the NPs characterization indicate that interactions bacteria/NPs are unfavorable as both structures are negatively charged, which would create repulsive forces.

10.
Front Nutr ; 7: 131, 2020.
Article in English | MEDLINE | ID: mdl-32903413

ABSTRACT

As the site of nutrient absorption, the small intestine is continuously exposed to preservatives and additives present in consumed food. While the effects of diet on the lower gastrointestinal tract are widely studied, the effects of food additives on the small intestinal epithelium and microbiota are less clearly understood. The goal of this work was to develop and establish a physiologically relevant model of the upper gastrointestinal tract to study the complex interactions between food additives, individual bacterial species, and intestinal function. To achieve this, an in vitro model incorporating simulated digestion, human intestinal epithelial cells, and the commensal, Gram-positive Lactobacillus rhamnosus, or the opportunistic, Gram-negative Escherichia coli was developed. This model was used to assess intestinal permeability and alkaline phosphatase activity following exposure to high glucose (HG), salt, emulsifier (TWEEN 20), food (milk chocolate candies) or chemical grade titanium dioxide nanoparticles (TiO2-NP), and food (whole wheat bread) or chemical grade gluten. It was found that HG increased intestinal permeability, the presence of bacteria remediated the negative effects of HG on intestinal permeability, and a decrease in permeability and IAP activity was observed with increasing concentration of TWEEN 20 both in the presence and absence of bacteria. While L. rhamnosus influenced the activity of intestinal alkaline phosphatase and tight junction protein distribution, E. coli produced indole to reinstate intestinal permeability. The source of TiO2 and gluten led to altered impacts on permeability and IAP activity. The growth of E. coli and L. rhamnosus was found to depend on the type of food additive used. Overall, the presence of bacteria in the in vitro model influenced the effects of food additives on intestinal function, suggesting a complex association between diet and upper GI microbiota. This model provides a method to study small intestinal function and host-microbe interactions in vitro in both healthy and diseased conditions.

11.
Tissue Barriers ; 8(2): 1754706, 2020 04 02.
Article in English | MEDLINE | ID: mdl-32338129

ABSTRACT

Atopic dermatitis (AD) is a chronic inflammatory disease that affects approximately 2-5% of adults worldwide. The pathogenesis of AD continues to be a well-debated point of conjecture, with numerous hypotheses having been proposed. AD conditions are associated with increased populations of Staphylococcus aureus and reduced skin lipids. In this study, we evaluate the ability of S. aureus to permeate across human stratum corneum (SC) exhibiting both normal and depleted lipid conditions consistent with AD. This permeation would enable bacteria to interact with underlying viable epidermal cells, which could serve as a trigger for inflammation and disease onset. Our results indicate that permeation of S. aureus through SC exhibiting normal lipid conditions is not statistically significant. However, bacteria can readily permeate through lipid depleted tissue over a 9-d period. These findings suggest that S. aureus may potentially act as the mechanistic cause, rather than merely the result of AD. ABBREVIATIONS: AD: Atopic dermatitis; SC: Stratum Corneum; AMP: Antimicrobial peptide; DIW: Deionized water; PDMS: Polydimethylsiloxane; GFP: Green fluorescent protein; BHI: Brain heart infusion medium.


Subject(s)
Dermatitis, Atopic/microbiology , Intermediate Filament Proteins/chemistry , Lipids/chemistry , Staphylococcus aureus/chemistry , Filaggrin Proteins , Humans
12.
Small ; 16(21): e2000601, 2020 05.
Article in English | MEDLINE | ID: mdl-32338455

ABSTRACT

Nanoparticles (NPs) are used in food packaging and processing and have become an integral part of many commonly ingested products. There are few studies that have focused on the interaction between ingested NPs, gut function, the mucus layer, and the gut microbiota. In this work, an in vitro model of gastrointestinal (GI) tract is used to determine whether, and how, the mucus layer is affected by the presence of Gram-positive, commensal Lactobacillus rhamnosus; Gram-negative, opportunistic Escherichia coli; and/or exposure to physiologically relevant doses of pristine or digested TiO2 NPs. Caco-2/HT29-MTX-E12 cell monolayers are exposed to physiological concentrations of bacteria (expressing fluorescent proteins) and/or TiO2 nanoparticles for a period of 4 h. To determine mucus thickness and composition, cell monolayers are stained with alcian blue, periodic acid schiff, or an Alexa Fluor 488 conjugate of wheat germ agglutinin. It is found that the presence of both bacteria and nanoparticles alter the thickness and composition of the mucus layer. Changes in the distribution or pattern of mucins can be indicative of pathological conditions, and this model provides a platform for understanding how bacteria and/or NPs may interact with and alter the mucus layer.


Subject(s)
Bacteria , Gastrointestinal Microbiome , Mucus , Nanoparticles , Titanium , Bacteria/drug effects , Caco-2 Cells , Cell Line , Gastrointestinal Microbiome/drug effects , Gastrointestinal Tract/microbiology , HT29 Cells , Humans , Mucus/chemistry , Mucus/drug effects , Mucus/microbiology , Nanoparticles/toxicity , Titanium/toxicity
13.
Environ Sci Nano ; 7(12): 3940-3964, 2020 Dec 01.
Article in English | MEDLINE | ID: mdl-33815806

ABSTRACT

Engineered nanomaterials (ENMs) have become common in the food industry, which motivates the need to evaluate ENM effects on human health. Gastrointestinal (GI) in vitro models (e.g. Caco-2, Caco-2/HT29-MTX) have been used in nanotoxicology research. However, the human gut environment is composed of both human cells and the gut microbiota. The goal of this study is to increase the complexity of the Caco-2/HT29-MTX in vitro model by co-culturing human cells with the Gram-positive, commensal Lactobacillus rhamnosus or the Gram-negative, opportunistic Escherichia coli; with the hypothesis that the presence of bacteria would ameliorate the effects of exposure to metal oxide nanoparticles (NPs) such as iron oxide (Fe2O3), silicone dioxide (SiO2), titanium dioxide (TiO2), or zinc oxide (ZnO). To understand this relationship, Caco-2/HT29-MTX cell barriers were acutely co-exposed (4 hours) to bacteria and/or NPs (pristine or in vitro digested). The activity of the brush border membrane (BBM) enzymes intestinal alkaline phosphatase (IAP), aminopeptidase-N (APN), sucrase isomaltase (SI) and the basolateral membrane enzyme (BLM) Na+/K+ ATPase were assessed. Findings show that (i) the human digestion process alters the physicochemical properties of NPs, (ii) large agglomerates of NPs remain entrapped on the apical side of the intestinal barrier, which (iii) affects the activity of BBM enzymes. Interestingly, some NPs effects were attenuated in the presence of either bacterial strains. Confocal microscopy detected bacteria-NPs interactions, which may impede the NP-intestinal cell contact. These results highlight the importance of improving in vitro models to closely mimic the complexities of the human body.

14.
J R Soc Interface ; 15(141)2018 04.
Article in English | MEDLINE | ID: mdl-29669890

ABSTRACT

Contemporary studies have revealed dramatic changes in the diversity of bacterial microbiota between healthy and diseased skin. However, the prevailing use of swabs to extract the microorganisms has meant that only population 'snapshots' are obtained, and all spatially resolved information of bacterial growth is lost. Here we report on the temporospatial growth of Staphylococcus aureus on the surface of the human stratum corneum (SC); the outermost layer of skin. This bacterial species dominates bacterial populations on skin with atopic dermatitis (AD). We first establish that the distribution of ceramides naturally present in the SC is heterogeneous, and correlates with the tissue's structural topography. This distribution subsequently impacts the growth of bacterial biofilms. In the SC retaining healthy ceramide concentrations, biofilms exhibit no spatial preference for growth. By contrast, a depletion of ceramides consistent with reductions known to occur with AD enables S. aureus to use the patterned network of topographical canyons as a conduit for growth. The ability of ceramides to govern bacterial growth is confirmed using a topographical skin canyon analogue coated with the ceramide subcomponent d-sphingosine. Our work appears to explain the causal link between ceramide depletion and increased S. aureus populations that is observed in AD. It may also provide insight into disease transmission as well as improving pre-operative skin cleansing techniques.


Subject(s)
Ceramides/metabolism , Epidermis/microbiology , Microbiota , Staphylococcus aureus/isolation & purification , Biofilms/growth & development , Humans , Staphylococcus aureus/physiology
15.
Front Microbiol ; 9: 3291, 2018.
Article in English | MEDLINE | ID: mdl-30687276

ABSTRACT

Bacterial biofilms are found in various environmental niches and are mostly comprised by two or more bacterial species. One such example, are the mixed species bacterial biofilms found in chronic lung infections of cystic fibrosis (CF) patients, which include the Staphylococcus aureus and Pseudomonas aeruginosa bacterial species. S. aureus is one of the CF lung initial colonizers and is assumed to be abrogated when P. aeruginosa becomes established, eliminating its involvement as the infection evolves. Common models used in research do not mimic the actual progression of the mixed species biofilms thus, in this work we developed an in vitro model, where S. aureus biofilms establish prior to the introduction of P. aeruginosa, simulating a state that is phenotypically more similar to the one found in CF lungs. Overall our results demonstrate that S. aureus is not outcompeted, and that timing of inoculation and bacterial concentration affect the final bacterial ratio and quorum sensing related gene expression during the dual species biofilm development.

16.
Sci Rep ; 6: 31342, 2016 08 10.
Article in English | MEDLINE | ID: mdl-27506163

ABSTRACT

Persister cells, a tolerant cell sub-population, are commonly associated with chronic and recurrent infections. However, little is known about their ability to actually initiate or establish an infection, become virulent and cause pathogenicity within a host. Here we investigated whether Staphylococcus aureus persister cells initiate an infection and are recognized by macrophages, while in a persister cell status, and upon awakening due to exposure to cis-2-decenoic acid (cis-DA). Our results show that S. aureus persister cells are not able to initiate infections in A. thaliana and present significantly reduced virulence towards C. elegans compared to total populations. In contrast, awakened S. aureus persister cells are able to initiate infections in A. thaliana and in C. elegans albeit, with lower mortality than total population. Furthermore, exposure of S. aureus persister cells to cis-DA led to a loss of tolerance to ciprofloxacin, and an increase of the bacterial fluorescence to levels found in total population. In addition, macrophage engulfment of persister cells was significantly lower than engulfment of total population, both before and following awakening. Overall our findings indicate that upon awakening of a persister population the cells regain their ability to infect hosts despite the absence of an increased immune response.


Subject(s)
Arabidopsis/microbiology , Caenorhabditis elegans/microbiology , Host-Pathogen Interactions , Macrophages/microbiology , Staphylococcus aureus/physiology , Animals , Anti-Bacterial Agents/pharmacology , Biofilms/drug effects , Cell Count , Ciprofloxacin/pharmacology , Fatty Acids, Monounsaturated/chemistry , Microbial Sensitivity Tests , Microbial Viability/drug effects , Plant Immunity , Staphylococcal Infections/microbiology , Virulence/drug effects
17.
Pharmaceuticals (Basel) ; 8(4): 816-35, 2015 Nov 25.
Article in English | MEDLINE | ID: mdl-26610524

ABSTRACT

Biofilms are complex communities of microorganisms in organized structures attached to surfaces. Importantly, biofilms are a major cause of bacterial infections in humans, and remain one of the most significant challenges to modern medical practice. Unfortunately, conventional therapies have shown to be inadequate in the treatment of most chronic biofilm infections based on the extraordinary innate tolerance of biofilms to antibiotics. Antagonists of quorum sensing signaling molecules have been used as means to control biofilms. QS and other cell-cell communication molecules are able to revert biofilm tolerance, prevent biofilm formation and disrupt fully developed biofilms, albeit with restricted effectiveness. Recently however, it has been demonstrated that Pseudomonas aeruginosa produces a small messenger molecule cis-2-decenoic acid (cis-DA) that shows significant promise as an effective adjunctive to antimicrobial treatment of biofilms. This molecule is responsible for induction of the native biofilm dispersion response in a range of Gram-negative and Gram-positive bacteria and in yeast, and has been shown to reverse persistence, increase microbial metabolic activity and significantly enhance the cidal effects of conventional antimicrobial agents. In this manuscript, the use of cis-2-decenoic acid as a novel agent for biofilm control is discussed. Stimulating the biofilm dispersion response as a novel antimicrobial strategy holds significant promise for enhanced treatment of infections and in the prevention of biofilm formation.

18.
Appl Environ Microbiol ; 80(22): 6976-91, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25192989

ABSTRACT

Persister cells, which are tolerant to antimicrobials, contribute to biofilm recalcitrance to therapeutic agents. In turn, the ability to kill persister cells is believed to significantly improve efforts in eradicating biofilm-related, chronic infections. While much research has focused on elucidating the mechanism(s) by which persister cells form, little is known about the mechanism or factors that enable persister cells to revert to an active and susceptible state. Here, we demonstrate that cis-2-decenoic acid (cis-DA), a fatty acid signaling molecule, is able to change the status of Pseudomonas aeruginosa and Escherichia coli persister cells from a dormant to a metabolically active state without an increase in cell number. This cell awakening is supported by an increase of the persister cells' respiratory activity together with changes in protein abundance and increases of the transcript expression levels of several metabolic markers, including acpP, 16S rRNA, atpH, and ppx. Given that most antimicrobials target actively growing cells, we also explored the effect of cis-DA on enhancing antibiotic efficacy in killing persister cells due to their inability to keep a persister cell state. Compared to antimicrobial treatment alone, combinational treatments of persister cell subpopulations with antimicrobials and cis-DA resulted in a significantly greater decrease in cell viability. In addition, the presence of cis-DA led to a decrease in the number of persister cells isolated. We thus demonstrate the ability of a fatty acid signaling molecule to revert bacterial cells from a tolerant phenotype to a metabolically active, antimicrobial-sensitive state.


Subject(s)
Anti-Bacterial Agents/pharmacology , Escherichia coli/drug effects , Escherichia coli/metabolism , Fatty Acids, Monounsaturated/metabolism , Pseudomonas aeruginosa/drug effects , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Drug Resistance, Bacterial , Escherichia coli/growth & development , Fatty Acids, Monounsaturated/chemistry , Isomerism , Microbial Sensitivity Tests , Pseudomonas aeruginosa/growth & development , Pseudomonas aeruginosa/metabolism , Signal Transduction/drug effects
19.
J Bacteriol ; 195(21): 4975-87, 2013 Nov.
Article in English | MEDLINE | ID: mdl-23995639

ABSTRACT

A hallmark characteristic of biofilms is their extraordinary tolerance to antimicrobial agents. While multiple factors are thought to contribute to the high level of antimicrobial tolerance of biofilms, little is known about the timing of induction of biofilm tolerance. Here, we asked when over the course of their development do biofilms gain their tolerance to antimicrobial agents? We demonstrate that in Pseudomonas aeruginosa, biofilm tolerance is linked to biofilm development, with transition to the irreversible attachment stage regulated by the two-component hybrid SagS, marking the timing when biofilms switch to the high-level tolerance phenotype. Inactivation of sagS rendered biofilms but not planktonic cells more susceptible to tobramycin, norfloxacin, and hydrogen peroxide. Moreover, inactivation of sagS also eliminated the recalcitrance of biofilms to killing by bactericidal antimicrobial agents, a phenotype comparable to that observed upon inactivation of brlR, which encodes a MerR-like transcriptional regulator required for biofilm tolerance. Multicopy expression of brlR in a ΔsagS mutant restored biofilm resistance and recalcitrance to killing by bactericidal antibiotics to wild-type levels. In contrast, expression of sagS did not restore the susceptibility phenotype of ΔbrlR mutant biofilms to wild-type levels, indicating that BrlR functions downstream of SagS. Inactivation of sagS correlated with reduced BrlR levels in biofilms, with the produced BrlR being impaired in binding to the previously described BrlR-activated promoters of the two multidrug efflux pump operons mexAB-oprM and mexEF-oprN. Our findings demonstrate that biofilm tolerance is linked to early biofilm development and SagS, with SagS contributing indirectly to BrlR activation.


Subject(s)
Bacterial Proteins/metabolism , Biofilms/growth & development , Drug Resistance, Bacterial/physiology , Gene Expression Regulation, Bacterial/physiology , Pseudomonas aeruginosa/drug effects , Pseudomonas aeruginosa/physiology , Anti-Bacterial Agents/pharmacology , Bacterial Proteins/genetics , Biomass , Genes, MDR/genetics , Genes, MDR/physiology , Mutation , Promoter Regions, Genetic , Protein Binding , Pseudomonas aeruginosa/genetics
20.
J Bacteriol ; 195(20): 4600-10, 2013 Oct.
Article in English | MEDLINE | ID: mdl-23935049

ABSTRACT

In the present study, we report the identification of a putative enoyl-coenzyme A (CoA) hydratase/isomerase that is required for synthesis of the biofilm dispersion autoinducer cis-2-decenoic acid in the human pathogen Pseudomonas aeruginosa. The protein is encoded by PA14_54640 (PA0745), named dspI for dispersion inducer. The gene sequence for this protein shows significant homology to RpfF in Xanthomonas campestris. Inactivation of dspI was shown to abolish biofilm dispersion autoinduction in continuous cultures of P. aeruginosa and resulted in biofilms that were significantly greater in thickness and biomass than those of the parental wild-type strain. Dispersion was shown to be inducible in dspI mutants by the exogenous addition of synthetic cis-2-decenoic acid or by complementation of ΔdspI in trans under the control of an arabinose-inducible promoter. Mutation of dspI was also shown to abolish cis-2-decenoic acid production, as revealed by gas chromatography-mass spectrometry (GC-MS) analysis of cell-free spent culture medium. The transcript abundance of dspI correlated with cell density, as determined by quantitative reverse transcriptase (RT) PCR. This regulation is consistent with the characterization of cis-2-decenoic acid as a cell-to-cell communication molecule that regulates biofilm dispersion in a cell density-dependent manner.


Subject(s)
Biofilms/growth & development , Enoyl-CoA Hydratase/metabolism , Fatty Acids, Monounsaturated/metabolism , Pseudomonas aeruginosa/physiology , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Enoyl-CoA Hydratase/genetics , Fatty Acids, Monounsaturated/chemistry , Gene Expression Regulation, Bacterial/physiology , Gene Expression Regulation, Enzymologic/physiology , Pseudomonas aeruginosa/chemistry , Pseudomonas aeruginosa/genetics
SELECTION OF CITATIONS
SEARCH DETAIL