Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters








Database
Language
Publication year range
1.
Am J Transplant ; 24(6): 933-943, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38228228

ABSTRACT

Following solid organ transplantation, small precursor populations of polyclonal CD8+ T cells specific for any graft-expressed antigen preferentially expand their high-affinity clones. This phenomenon, termed "avidity maturation," results in a larger population of CD8+ T cells with increased sensitivity to alloantigen, posing a greater risk for graft rejection. Using a mouse model of minor-mismatched skin transplantation, coupled with the tracking of 2 skin graft-reactive CD8+ T cell receptor-transgenic tracer populations with high and low affinity for the same peptide-major histocompatibility complex, we explored the conventional paradigm that CD8+ T cell avidity maturation occurs through T cell receptor affinity-based competition for cognate antigen. Our data revealed "interclonal CD8-CD8 help," whereby lower/intermediate affinity clones help drive the preferential expansion of their higher affinity counterparts in an interleukin-2/CD25-dependent manner. Consequently, the CD8-helped high-affinity clones exhibit greater expansion and develop augmented effector functions in the presence of their low-affinity counterparts, correlating with more severe graft damage. Finally, interclonal CD8-CD8 help was suppressed by costimulation blockade treatment. Thus, high-affinity CD8+ T cells can leverage help from low-affinity CD8+ T cells of identical specificity to promote graft rejection. Suppressing provision of interclonal CD8-CD8 help may be important to improve transplant outcomes.


Subject(s)
CD8-Positive T-Lymphocytes , Graft Rejection , Mice, Inbred C57BL , Skin Transplantation , Animals , CD8-Positive T-Lymphocytes/immunology , Mice , Graft Rejection/immunology , Isoantigens/immunology , Mice, Transgenic , Mice, Inbred BALB C , Graft Survival/immunology , Receptors, Antigen, T-Cell/immunology , Receptors, Antigen, T-Cell/metabolism , Receptors, Antigen, T-Cell/genetics
2.
J Clin Invest ; 133(21)2023 11 01.
Article in English | MEDLINE | ID: mdl-37676735

ABSTRACT

Even when successfully induced, immunological tolerance to solid organs remains vulnerable to inflammatory insults, which can trigger rejection. In a mouse model of cardiac allograft tolerance in which infection with Listeria monocytogenes (Lm) precipitates rejection of previously accepted grafts, we showed that recipient CD4+ TCR75 cells reactive to a donor MHC class I-derived peptide become hypofunctional if the allograft is accepted for more than 3 weeks. Paradoxically, infection-induced transplant rejection was not associated with transcriptional or functional reinvigoration of TCR75 cells. We hypothesized that there is heterogeneity in the level of dysfunction of different allospecific T cells, depending on duration of their cognate antigen expression. Unlike CD4+ TCR75 cells, CD4+ TEa cells specific for a peptide derived from donor MHC class II, an alloantigen whose expression declines after transplantation but remains inducible in settings of inflammation, retained function in tolerant mice and expanded during Lm-induced rejection. Repeated injections of alloantigens drove hypofunction in TEa cells and rendered grafts resistant to Lm-dependent rejection. Our results uncover a functional heterogeneity in allospecific T cells of distinct specificities after tolerance induction and reveal a strategy to defunctionalize a greater repertoire of allospecific T cells, thereby mitigating a critical vulnerability of tolerance.


Subject(s)
CD4-Positive T-Lymphocytes , Heart Transplantation , Mice , Animals , Transplantation, Homologous , Transplantation Tolerance , Graft Rejection/genetics , Histocompatibility Antigens Class I , Peptides , Isoantigens
3.
Am J Transplant ; 22(10): 2348-2359, 2022 10.
Article in English | MEDLINE | ID: mdl-35633180

ABSTRACT

Oral antigen exposure is a powerful, non-invasive route to induce immune tolerance to dietary antigens, and has been modestly successful at prolonging graft survival in rodent models of transplantation. To harness the mechanisms of oral tolerance for promoting long-term graft acceptance, we developed a mouse model where the antigen ovalbumin (OVA) was introduced orally prior to transplantation with skin grafts expressing OVA. Oral OVA treatment pre-transplantation promoted permanent graft acceptance and linked tolerance to skin grafts expressing OVA fused to the additional antigen 2W. Tolerance was donor-specific, as secondary donor-matched, but not third-party allografts were spontaneously accepted. Oral OVA treatment promoted an anergic phenotype in OVA-reactive CD4+ and CD8+ conventional T cells (Tconvs) and expanded OVA-reactive Tregs pre-transplantation. However, skin graft acceptance following oral OVA resisted partial depletion of Tregs and blockade of PD-L1. Mechanistically, we revealed a role for the proximal gut draining lymph nodes (gdLNs) in mediating this effect, as an intestinal infection that drains to the proximal gdLNs prevented tolerance induction. Our study extends previous work applying oral antigen exposure to transplantation and serves as proof of concept that the systemic immune mechanisms supporting oral tolerance are sufficient to promote long-term graft acceptance.


Subject(s)
Isoantigens , Skin Transplantation , Animals , Antigens , B7-H1 Antigen , Graft Survival , Immune Tolerance , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Ovalbumin , Transplantation Tolerance
4.
Proc Natl Acad Sci U S A ; 116(47): 23682-23690, 2019 11 19.
Article in English | MEDLINE | ID: mdl-31685610

ABSTRACT

Following antigen stimulation, naïve T cells differentiate into memory cells that mediate antigen clearance more efficiently upon repeat encounter. Donor-specific tolerance can be achieved in a subset of transplant recipients, but some of these grafts are rejected after years of stability, often following infections. Whether T cell memory can develop from a tolerant state and whether these formerly tolerant patients develop antidonor memory is not known. Using a mouse model of cardiac transplantation in which donor-specific tolerance is induced with costimulation blockade (CoB) plus donor-specific transfusion (DST), we have previously shown that systemic infection with Listeria monocytogenes (Lm) months after transplantation can erode or transiently abrogate established tolerance. In this study, we tracked donor-reactive T cells to investigate whether memory can be induced when alloreactive T cells are activated in the setting of tolerance. We show alloreactive T cells persist after induction of cardiac transplantation tolerance, but fail to acquire a memory phenotype despite becoming antigen experienced. Instead, donor-reactive T cells develop T cell-intrinsic dysfunction evidenced when removed from the tolerant environment. Notably, Lm infection after tolerance did not rescue alloreactive T cell memory differentiation or functionality. CoB and antigen persistence were sufficient together but not separately to achieve alloreactive T cell dysfunction, and conventional immunosuppression could substitute for CoB. Antigen persistence was required, as early but not late surgical allograft removal precluded the acquisition of T cell dysfunction. Our results demonstrate transplant tolerance-associated T cell-intrinsic dysfunction that is resistant to memory development even after Lm-mediated disruption of tolerance.


Subject(s)
Graft Survival/immunology , Immune Tolerance/immunology , T-Lymphocyte Subsets/immunology , Transplantation Immunology , Allografts , Animals , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/transplantation , Forkhead Transcription Factors/analysis , Genes, Reporter , Graft Rejection/immunology , H-2 Antigens/immunology , Heart Transplantation , Histocompatibility Antigens Class II/immunology , Immunologic Memory , Isoantigens/immunology , Listeria monocytogenes , Listeriosis/immunology , Lymphocyte Transfusion , Mice , Mice, Congenic , Mice, Inbred BALB C , Mice, Inbred C57BL , Postoperative Complications/immunology , T-Lymphocytes, Regulatory/immunology , Tissue Donors
5.
Cell Mol Immunol ; 16(4): 324-333, 2019 04.
Article in English | MEDLINE | ID: mdl-30760917

ABSTRACT

Donor-specific transplantation tolerance that enables weaning from immunosuppressive drugs but retains immune competence to non-graft antigens has been a lasting pursuit since the discovery of neonatal tolerance. More recently, efforts have been devoted not only to understanding how transplantation tolerance can be induced but also the mechanisms necessary to maintain it as well as how inflammatory exposure challenges its durability. This review focuses on recent advances regarding key peripheral mechanisms of T cell tolerance, with the underlying hypothesis that a combination of several of these mechanisms may afford a more robust and durable tolerance and that a better understanding of these individual pathways may permit longitudinal tracking of tolerance following clinical transplantation to serve as biomarkers. This review may enable a personalized assessment of the degree of tolerance in individual patients and the opportunity to strengthen the robustness of peripheral tolerance.


Subject(s)
B-Lymphocytes, Regulatory/immunology , Isoantigens/immunology , T-Lymphocytes, Regulatory/immunology , Transplantation Tolerance , Animals , Graft Rejection/immunology , Humans , Immunosuppression Therapy , T-Lymphocytes, Regulatory/metabolism
6.
Am J Transplant ; 19(5): 1560-1567, 2019 05.
Article in English | MEDLINE | ID: mdl-30659772

ABSTRACT

Regular exercise reduces risk of various chronic diseases and can prevent the development and recurrence of cancer, making it a promising nonpharmacological modulator of disease. Yet the effect of regular exercise on solid organ transplant outcome remains uncertain. Using a model of voluntary wheel-running exercise and skin transplantation in mice, we hypothesized that exercise strengthens the alloimmune response, leading to an increased rate of rejection. Instead, we found that regular exercise in mice resulted in prolonged graft survival, with mean allograft survival time increasing by almost 50%. We observed this graft survival extension in exercised mice despite evidence of a slightly enhanced alloimmune response, comprised of increased proliferation of alloreactive CD4+ T cells, as well as increased interferon-γ production by these cells. Exercise was not associated with significant changes in numbers of conventional CD4+ or CD8+ T cells, NK cells, or Foxp3+ regulatory T cells. In conclusion, our study suggests that exercise increases skin graft resistance to a similar or slightly higher level of alloimmunity and supports regular exercise as an important beneficial pursuit for transplant recipients.


Subject(s)
CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , Graft Rejection/prevention & control , Graft Survival/immunology , Physical Conditioning, Animal/methods , Skin Transplantation/adverse effects , T-Lymphocytes, Regulatory/immunology , Animals , Female , Graft Rejection/etiology , Male , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Transplantation, Homologous
7.
Cell Rep ; 24(8): 2112-2126, 2018 08 21.
Article in English | MEDLINE | ID: mdl-30134172

ABSTRACT

Mechanisms implicated in robust transplantation tolerance at the cellular level can be broadly categorized into those that inhibit alloreactive T cells intrinsically (clonal deletion and dysfunction) or extrinsically through regulation. Here, we investigated whether additional population-level mechanisms control T cells by examining whether therapeutically induced peripheral transplantation tolerance could influence T cell populations' avidity for alloantigens. Whereas T cells with high avidity preferentially accumulated during acute rejection of allografts, the alloreactive T cells in tolerant recipients retained a low-avidity profile, comparable to naive mice despite evidence of activation. These contrasting avidity profiles upon productive versus tolerogenic stimulation were durable and persisted upon alloantigen re-encounter in the absence of any immunosuppression. Thus, peripheral transplantation tolerance involves control of alloreactive T cells at the population level, in addition to the individual cell level. Controlling expansion or eliminating high-affinity, donor-specific T cells long term may be desirable to achieve robust transplantation tolerance in the clinic.


Subject(s)
Graft Rejection/immunology , Immune Tolerance/immunology , Transplantation Tolerance/immunology , Animals , Humans , Mice
8.
Microbiome ; 6(1): 96, 2018 05 25.
Article in English | MEDLINE | ID: mdl-29793539

ABSTRACT

BACKGROUND: Solid organ transplant recipients show heterogeneity in the occurrence and timing of acute rejection episodes. Understanding the factors responsible for such variability in patient outcomes may lead to improved diagnostic and therapeutic approaches. Rejection kinetics of transplanted organs mainly depends on the extent of genetic disparities between donor and recipient, but a role for environmental factors is emerging. We have recently shown that major alterations of the microbiota following broad-spectrum antibiotics, or use of germ-free animals, promoted longer skin graft survival in mice. Here, we tested whether spontaneous differences in microbial colonization between genetically similar individuals can contribute to variability in graft rejection kinetics. RESULTS: We compared rejection kinetics of minor mismatched skin grafts in C57BL/6 mice from Jackson Laboratory (Jax) and Taconic Farms (Tac), genetically similar animals colonized by different commensal microbes. Female Tac mice rejected skin grafts from vendor-matched males more quickly than Jax mice. We observed prolonged graft survival in Tac mice when they were exposed to Jax mice microbiome through co-housing or fecal microbiota transplantation (FMT) by gastric gavage. In contrast, exposure to Tac mice did not change graft rejection kinetics in Jax mice, suggesting a dominant suppressive effect of Jax microbiota. High-throughput sequencing of 16S rRNA gene amplicons from Jax and Tac mice fecal samples confirmed a convergence of microbiota composition after cohousing or fecal transfer. Our analysis of amplicon data associated members of a single bacterial genus, Alistipes, with prolonged graft survival. Consistent with this finding, members of the genus Alistipes were absent in a separate Tac cohort, in which fecal transfer from Jax mice failed to prolong graft survival. CONCLUSIONS: These results demonstrate that differences in resident microbiome in healthy individuals may translate into distinct kinetics of graft rejection, and contribute to interpersonal variability in graft outcomes. The association between Alistipes and prolonged skin graft survival in mice suggests that members of this genus might affect host physiology, including at sites distal to the gastrointestinal tract. Overall, these findings allude to a potential therapeutic role for specific gut microbes to promote graft survival through the administration of probiotics, or FMT.


Subject(s)
Gastrointestinal Microbiome/physiology , Gastrointestinal Tract/microbiology , Graft Rejection/microbiology , Graft Survival/physiology , Organ Transplantation , Skin Transplantation , Animals , Fecal Microbiota Transplantation , Feces/microbiology , Female , Mice , Mice, Inbred C57BL , Skin/microbiology , Treatment Outcome
9.
Br J Haematol ; 171(2): 215-226, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26194163

ABSTRACT

T-cell lymphomas (TCL) are aggressive lymphomas usually treated with CHOP (cyclophsophamide, doxorubicin, vincristine, prednisolone)-like regimens upfront. Recent data suggest that TCL are driven by epigenetic defects, potentially rendering them sensitive to epigenetic therapies. We explored the therapeutic merits of a combined epigenetic platform using histone deacetylase inhibitors (HDACIs) and DNA methyltransferase inhibitors (DNMT) in in vitro and in vivo models of TCL. The 50% inhibitory concentration (IC50 ) values revealed romidepsin was the most potent HDACI, with an IC50 in the low nanomolar range. The combination with a hypomethylating agent produced synergy across all cell lines, which was confirmed in cytotoxicity and apoptosis assays. An in vivo xenograft study demonstrated inhibition of tumour growth in the combination cohort compared to the single agent. Gene expression array and global methylation profiling revealed differentially expressed genes and modulated pathways for each of the single treatment conditions and the combination. Most of the effects induced by the single agent treatment were maintained in the combination group. In total, 944 unique genes were modulated by the combination treatment, supporting the hypothesis of molecular synergism. These data suggest combinations of hypomethylating agents and HDACIs are synergistic in models of TCL, which is supported at the molecular level.

SELECTION OF CITATIONS
SEARCH DETAIL