Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
1.
bioRxiv ; 2023 Jul 28.
Article in English | MEDLINE | ID: mdl-37546906

ABSTRACT

The identification of cell-type-specific 3D chromatin interactions between regulatory elements can help to decipher gene regulation and to interpret the function of disease-associated non-coding variants. However, current chromosome conformation capture (3C) technologies are unable to resolve interactions at this resolution when only small numbers of cells are available as input. We therefore present ChromaFold, a deep learning model that predicts 3D contact maps and regulatory interactions from single-cell ATAC sequencing (scATAC-seq) data alone. ChromaFold uses pseudobulk chromatin accessibility, co-accessibility profiles across metacells, and predicted CTCF motif tracks as input features and employs a lightweight architecture to enable training on standard GPUs. Once trained on paired scATAC-seq and Hi-C data in human cell lines and tissues, ChromaFold can accurately predict both the 3D contact map and peak-level interactions across diverse human and mouse test cell types. In benchmarking against a recent deep learning method that uses bulk ATAC-seq, DNA sequence, and CTCF ChIP-seq to make cell-type-specific predictions, ChromaFold yields superior prediction performance when including CTCF ChIP-seq data as an input and comparable performance without. Finally, fine-tuning ChromaFold on paired scATAC-seq and Hi-C in a complex tissue enables deconvolution of chromatin interactions across cell subpopulations. ChromaFold thus achieves state-of-the-art prediction of 3D contact maps and regulatory interactions using scATAC-seq alone as input data, enabling accurate inference of cell-type-specific interactions in settings where 3C-based assays are infeasible.

2.
Chem Sci ; 14(4): 751-770, 2023 Jan 25.
Article in English | MEDLINE | ID: mdl-36755730

ABSTRACT

Polyamide reverse osmosis (PA-RO) membranes achieve remarkably high water permeability and salt rejection, making them a key technology for addressing water shortages through processes including seawater desalination and wastewater reuse. However, current state-of-the-art membranes suffer from challenges related to inadequate selectivity, fouling, and a poor ability of existing models to predict performance. In this Perspective, we assert that a molecular understanding of the mechanisms that govern selectivity and transport of PA-RO and other polymer membranes is crucial to both guide future membrane development efforts and improve the predictive capability of transport models. We summarize the current understanding of ion, water, and polymer interactions in PA-RO membranes, drawing insights from nanofiltration and ion exchange membranes. Building on this knowledge, we explore how these interactions impact the transport properties of membranes, highlighting assumptions of transport models that warrant further investigation to improve predictive capabilities and elucidate underlying transport mechanisms. We then underscore recent advances in in situ characterization techniques that allow for direct measurements of previously difficult-to-obtain information on hydrated polymer membrane properties, hydrated ion properties, and ion-water-membrane interactions as well as powerful computational and electrochemical methods that facilitate systematic studies of transport phenomena.

3.
Cancer Discov ; 13(1): 216-243, 2023 01 09.
Article in English | MEDLINE | ID: mdl-36264161

ABSTRACT

A third of patients with diffuse large B-cell lymphoma (DLBCL) present with extranodal dissemination, which is associated with inferior clinical outcomes. MYD88L265P is a hallmark extranodal DLBCL mutation that supports lymphoma proliferation. Yet extranodal lymphomagenesis and the role of MYD88L265P in transformation remain mostly unknown. Here, we show that B cells expressing Myd88L252P (MYD88L265P murine equivalent) activate, proliferate, and differentiate with minimal T-cell costimulation. Additionally, Myd88L252P skewed B cells toward memory fate. Unexpectedly, the transcriptional and phenotypic profiles of B cells expressing Myd88L252P, or other extranodal lymphoma founder mutations, resembled those of CD11c+T-BET+ aged/autoimmune memory B cells (AiBC). AiBC-like cells progressively accumulated in animals prone to develop lymphomas, and ablation of T-BET, the AiBC master regulator, stripped mouse and human mutant B cells of their competitive fitness. By identifying a phenotypically defined prospective lymphoma precursor population and its dependencies, our findings pave the way for the early detection of premalignant states and targeted prophylactic interventions in high-risk patients. SIGNIFICANCE: Extranodal lymphomas feature a very poor prognosis. The identification of phenotypically distinguishable prospective precursor cells represents a milestone in the pursuit of earlier diagnosis, patient stratification, and prophylactic interventions. Conceptually, we found that extranodal lymphomas and autoimmune disorders harness overlapping pathogenic trajectories, suggesting these B-cell disorders develop and evolve within a spectrum. See related commentary by Leveille et al. (Blood Cancer Discov 2023;4:8-11). This article is highlighted in the In This Issue feature, p. 1.


Subject(s)
B-Lymphocytes , Lymphoma, Large B-Cell, Diffuse , Humans , Animals , Mice , Aged , Prospective Studies , Lymphoma, Large B-Cell, Diffuse/pathology , Mutation , Prognosis
4.
Cancer Cell ; 39(10): 1305-1307, 2021 10 11.
Article in English | MEDLINE | ID: mdl-34597590

ABSTRACT

Diffuse large B cell lymphoma (DLBCL) is a markedly phenotypically heterogenous disease, frequently assessed using bulk genomic techniques that blur the intrinsic heterogeneity of each tumor. In this issue of Cancer Cell, Steen et al. have utilized a computational framework called EcoTyper to skillfully dissect bulk transcriptomic tumor profiles into different cell type components in an unsupervised manner.


Subject(s)
Lymphoma, Large B-Cell, Diffuse , Transcriptome , Gene Expression Profiling , Genomics , Humans , Lymphoma, Large B-Cell, Diffuse/genetics , Prognosis
5.
Cell Rep ; 36(10): 109625, 2021 09 07.
Article in English | MEDLINE | ID: mdl-34496233

ABSTRACT

The normal androgen receptor (AR) cistrome and transcriptional program are fundamentally altered in prostate cancer (PCa). Here, we profile the chromatin landscape and AR-directed transcriptional program in normal prostate cells and show the impact of SPOP mutations, an early event in prostate tumorigenesis. In genetically normal mouse prostate organoids, SPOP mutation results in accessibility and AR binding patterns similar to that of human PCa. Consistent with dependence on AR signaling, castration of SPOP mutant mouse models results in the loss of neoplastic phenotypes, and human SPOP mutant PCa shows a favorable response to AR-targeted therapies. Together, these data validate mouse prostate organoids as a robust model for studying epigenomic and transcriptional alterations in normal prostate, provide valuable datasets for further studies, and show that a single genomic alteration may be sufficient to reprogram the chromatin of normal prostate cells toward oncogenic phenotypes, with potential therapeutic implications for AR-targeting therapies.


Subject(s)
Chromatin/metabolism , Gene Expression Regulation, Neoplastic/genetics , Prostate/metabolism , Prostatic Neoplasms/metabolism , Androgens/immunology , Animals , Carcinogenesis/genetics , Male , Mice, Transgenic , Prostatic Neoplasms/genetics , Receptors, Androgen/metabolism , Repressor Proteins/metabolism , Signal Transduction/physiology
6.
Nat Immunol ; 22(2): 240-253, 2021 02.
Article in English | MEDLINE | ID: mdl-33432228

ABSTRACT

During the germinal center (GC) reaction, B cells undergo extensive redistribution of cohesin complex and three-dimensional reorganization of their genomes. Yet, the significance of cohesin and architectural programming in the humoral immune response is unknown. Herein we report that homozygous deletion of Smc3, encoding the cohesin ATPase subunit, abrogated GC formation, while, in marked contrast, Smc3 haploinsufficiency resulted in GC hyperplasia, skewing of GC polarity and impaired plasma cell (PC) differentiation. Genome-wide chromosomal conformation and transcriptional profiling revealed defects in GC B cell terminal differentiation programs controlled by the lymphoma epigenetic tumor suppressors Tet2 and Kmt2d and failure of Smc3-haploinsufficient GC B cells to switch from B cell- to PC-defining transcription factors. Smc3 haploinsufficiency preferentially impaired the connectivity of enhancer elements controlling various lymphoma tumor suppressor genes, and, accordingly, Smc3 haploinsufficiency accelerated lymphomagenesis in mice with constitutive Bcl6 expression. Collectively, our data indicate a dose-dependent function for cohesin in humoral immunity to facilitate the B cell to PC phenotypic switch while restricting malignant transformation.


Subject(s)
B-Lymphocytes/metabolism , Cell Cycle Proteins/deficiency , Cell Cycle Proteins/genetics , Cell Transformation, Neoplastic/genetics , Chondroitin Sulfate Proteoglycans/genetics , Chromosomal Proteins, Non-Histone/deficiency , Chromosomal Proteins, Non-Histone/genetics , Gene Dosage , Germinal Center/metabolism , Immunity, Humoral , Lymphoma, B-Cell/genetics , Animals , B-Lymphocytes/immunology , B-Lymphocytes/pathology , Cell Cycle Proteins/metabolism , Cell Differentiation , Cell Proliferation , Cell Transformation, Neoplastic/immunology , Cell Transformation, Neoplastic/metabolism , Cell Transformation, Neoplastic/pathology , Cells, Cultured , Chondroitin Sulfate Proteoglycans/deficiency , Chondroitin Sulfate Proteoglycans/metabolism , Chromosomal Proteins, Non-Histone/metabolism , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Dioxygenases , Gene Deletion , Gene Expression Regulation, Neoplastic , Germinal Center/immunology , Germinal Center/pathology , Haploinsufficiency , Histone-Lysine N-Methyltransferase/genetics , Histone-Lysine N-Methyltransferase/metabolism , Humans , Lymphoma, B-Cell/immunology , Lymphoma, B-Cell/metabolism , Lymphoma, B-Cell/pathology , Lymphoma, Large B-Cell, Diffuse/genetics , Lymphoma, Large B-Cell, Diffuse/immunology , Lymphoma, Large B-Cell, Diffuse/metabolism , Lymphoma, Large B-Cell, Diffuse/pathology , Mice, Inbred C57BL , Mice, Knockout , Myeloid-Lymphoid Leukemia Protein/genetics , Myeloid-Lymphoid Leukemia Protein/metabolism , Proto-Oncogene Proteins/genetics , Proto-Oncogene Proteins/metabolism , Signal Transduction , Cohesins
7.
Angiogenesis ; 23(3): 443-458, 2020 08.
Article in English | MEDLINE | ID: mdl-32385775

ABSTRACT

During the initiation of pregnancy, the vasculature of the implantation site expands rapidly, yet little is known about this process or its role in fertility. Here, we report that endothelial-specific deletion of a disintegrin and metalloprotease 10 (ADAM10), an essential regulator of Notch signaling, results in severe subfertility in mice. We found that implantation sites develop until 5.5 days post conception (dpc) but are resorbed by 6.5 dpc in A10ΔEC mice. Analysis of the mutant implantation sites showed impaired decidualization and abnormal vascular patterning compared to controls. Moreover, RNA-seq analysis revealed changes in endothelial cell marker expression consistent with defective ADAM10/Notch signaling in samples from A10ΔEC mice, suggesting that this signaling pathways is essential for the physiological function of endometrial endothelial cells during early pregnancy. Our findings raise the possibility that impaired endothelial cell function could be a cause for repeated pregnancy loss (RPL) and infertility in humans.


Subject(s)
ADAM10 Protein/deficiency , Amyloid Precursor Protein Secretases/deficiency , Decidua/metabolism , Fertility , Gene Deletion , Membrane Proteins/deficiency , Receptors, Notch/metabolism , Signal Transduction , ADAM10 Protein/metabolism , Amyloid Precursor Protein Secretases/metabolism , Animals , Female , Membrane Proteins/metabolism , Mice , Mice, Knockout , Pregnancy , Receptors, Notch/genetics
8.
Cancer Cell ; 36(4): 402-417.e13, 2019 10 14.
Article in English | MEDLINE | ID: mdl-31564638

ABSTRACT

Metastasis is the leading cause of cancer mortality. Chromatin remodeling provides the foundation for the cellular reprogramming necessary to drive metastasis. However, little is known about the nature of this remodeling and its regulation. Here, we show that metastasis-inducing pathways regulate histone chaperones to reduce canonical histone incorporation into chromatin, triggering deposition of H3.3 variant at the promoters of poor-prognosis genes and metastasis-inducing transcription factors. This specific incorporation of H3.3 into chromatin is both necessary and sufficient for the induction of aggressive traits that allow for metastasis formation. Together, our data clearly show incorporation of histone variant H3.3 into chromatin as a major regulator of cell fate during tumorigenesis, and histone chaperones as valuable therapeutic targets for invasive carcinomas.


Subject(s)
Carcinoma/pathology , Chromatin/metabolism , Gene Expression Regulation, Neoplastic , Histones/metabolism , Neoplasm Metastasis/genetics , Animals , Carcinogenesis/genetics , Carcinoma/genetics , Cell Line, Tumor , Chromatin/genetics , Chromatin Assembly Factor-1/genetics , Chromatin Assembly Factor-1/metabolism , Disease Progression , Epigenesis, Genetic , Epithelial-Mesenchymal Transition/genetics , Female , Histones/genetics , Humans , Male , Mice , Promoter Regions, Genetic/genetics , RNA-Seq , Transcription Factors/genetics , Xenograft Model Antitumor Assays
9.
Cancer Discov ; 7(1): 38-53, 2017 01.
Article in English | MEDLINE | ID: mdl-27733359

ABSTRACT

Somatic mutations in CREBBP occur frequently in B-cell lymphoma. Here, we show that loss of CREBBP facilitates the development of germinal center (GC)-derived lymphomas in mice. In both human and murine lymphomas, CREBBP loss-of-function resulted in focal depletion of enhancer H3K27 acetylation and aberrant transcriptional silencing of genes that regulate B-cell signaling and immune responses, including class II MHC. Mechanistically, CREBBP-regulated enhancers are counter-regulated by the BCL6 transcriptional repressor in a complex with SMRT and HDAC3, which we found to bind extensively to MHC class II loci. HDAC3 loss-of-function rescued repression of these enhancers and corresponding genes, including MHC class II, and more profoundly suppressed CREBBP-mutant lymphomas in vitro and in vivo Hence, CREBBP loss-of-function contributes to lymphomagenesis by enabling unopposed suppression of enhancers by BCL6/SMRT/HDAC3 complexes, suggesting HDAC3-targeted therapy as a precision approach for CREBBP-mutant lymphomas. SIGNIFICANCE: Our findings establish the tumor suppressor function of CREBBP in GC lymphomas in which CREBBP mutations disable acetylation and result in unopposed deacetylation by BCL6/SMRT/HDAC3 complexes at enhancers of B-cell signaling and immune response genes. Hence, inhibition of HDAC3 can restore the enhancer histone acetylation and may serve as a targeted therapy for CREBBP-mutant lymphomas. Cancer Discov; 7(1); 38-53. ©2016 AACR.See related commentary by Höpken, p. 14This article is highlighted in the In This Issue feature, p. 1.


Subject(s)
CREB-Binding Protein/genetics , Germinal Center/metabolism , Histone Deacetylases/genetics , Lymphoma, Large B-Cell, Diffuse/genetics , Mutation , Acetylation , Animals , CREB-Binding Protein/metabolism , Cell Line, Tumor , Enhancer Elements, Genetic , Gene Knockout Techniques , Histone Deacetylases/metabolism , Histones/metabolism , Humans , Lymphoma, Large B-Cell, Diffuse/metabolism , Mice , Neoplasm Transplantation , Nuclear Receptor Co-Repressor 2/genetics , Proto-Oncogene Proteins c-bcl-6/genetics , Transcription, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL