Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters








Database
Language
Publication year range
1.
J Phys Condens Matter ; 35(30)2023 Apr 27.
Article in English | MEDLINE | ID: mdl-37102208

ABSTRACT

Fe-based superconductors are one of the current research focuses. FeTe is unique in the series of FeSe1-xTex, since it is nonsuperconducting near the FeTe side in the phase diagram in contrast to the presence of superconductivity in other region. However, FeTe thin films become superconducting after oxygen annealing and the mechanism remains elusive. Here, we report the temperature dependences of resistivity, Hall effect and magnetoresistance (MR) of a series of FeTe thin films with different amounts of excess Fe and oxygen. These properties show dramatic changes with excess Fe and oxygen incorporation. We found the Hall coefficients are positive for the oxygen-annealed samples, in contrast to the transition from positive to negative below 50 K for the vacuum-annealed samples. For all samples, both the resistivity and Hall coefficient show a dramatic drop, respectively, at around 50 K-75 K, implying coexistence of superconductivity and antiferromagnetic order for the oxygen-annealed samples. The vacuum-annealed samples show both positive and negative values of MR depending on temperature, while negative MR dominates for the oxygen-annealed samples. We also found that oxygen annealing reduces the excess Fe in FeTe, which has been neglected before. The results are discussed in terms of several contributions, and a comparison is made between the oxygen-annealed FeTe thin films and FeSe1-xTex. This work is helpful for shedding light on the understanding of oxygen-annealed FeTe thin films.

2.
ACS Appl Mater Interfaces ; 12(10): 12238-12245, 2020 Mar 11.
Article in English | MEDLINE | ID: mdl-32052958

ABSTRACT

Heterostructures composed of superconductor and ferroelectrics (SC/FE) are very important for manipulating the superconducting property and applications. However, growth of high-quality superconducting iron chalcogenide films is challenging because of their volatility and FE substrate with rough surface and large lattice mismatch. Here, we report a two-step growth approach to get high-quality FeSe0.5Te0.5 (FST) films on FE Pb(Mg1/3Nb2/3)0.7Ti0.3O3 with large lattice mismatch, which show superconductivity at only around 10 nm. Through a systematic study of structural and electric transport properties of samples with different thicknesses, a mechanism to grow high-quality FST is discovered. Moreover, electric-field-induced remarkable change of Tc (superconducting transition temperature) is demonstrated in a 20 nm FST film. This work paves the way to grow high-quality films which contain volatile element and have large lattice mismatch with the substrate. It is also helpful for manipulating the superconducting property in SC/FE heterostructures.

3.
Sci Rep ; 5: 14133, 2015 Sep 18.
Article in English | MEDLINE | ID: mdl-26382136

ABSTRACT

We report the structural and superconducting properties of FeSe0.3Te0.7 (FST) thin films with different thicknesses grown on ferroelectric Pb(Mg1/3Nb2/3)0.7Ti0.3O3 substrates. It was shown that the FST films undergo biaxial tensile strains which are fully relaxed for films with thicknesses above 200 nm. Electrical transport measurements reveal that the ultrathin films exhibit an insulating behavior and superconductivity appears for thicker films with Tc saturated above 200 nm. The current-voltage curves around the superconducting transition follow the Berezinskii-Kosterlitz-Thouless (BKT) transition behavior and the resistance-temperature curves can be described by the Halperin-Nelson relation, revealing quasi-two-dimensional phase fluctuation in FST thin films. The Ginzburg number decreases with increasing film thickness indicating the decrease of the strength of thermal fluctuations. Upon applying electric field to the heterostructure, Tc of FST thin film increases due to the reduction of the tensile strain in FST. This work sheds light on the superconductivity, strain effect as well as electric-field modulation of superconductivity in FST films.

SELECTION OF CITATIONS
SEARCH DETAIL