Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 61
Filter
Add more filters








Publication year range
1.
Pharmacol Res ; 209: 107453, 2024 Oct 10.
Article in English | MEDLINE | ID: mdl-39393437

ABSTRACT

Vasculogenic mimicry (VM) contributes factor to the poor prognosis of malignant melanoma. Developing deoxyhypusine synthase (DHPS) inhibitors against melanoma VM is clinically essential. In this study, we optimized and synthesized a series of compounds based on the candidate structure, and the hit compound 7k was identified through enzyme assay and cell viability inhibition screening. Both inside and outside the cell, 7k's ability to target DHPS and its high affinity were demonstrated. Molecular dynamics and point mutation indicated that mutations of K329 or V129 in DHPS abolish 7k's inhibitory activity. Using PCR arrays, solid-state antibody microarrays, and angiogenesis assays investigated 7k's impact on melanoma cells to reveal that DHPS regulates melanoma VM by promoting FGFR2 and c-KIT expression. Surprisingly, 7k was discovered to inhibit MC1R-mediated melanin synthesis in the zebrafish. Pharmacokinetic evaluations demonstrated 7k's favorable properties, and xenograft models evidenced its notable anti-melanoma efficacy, achieving a TGI of 73 %. These results highlighted DHPS as key in melanoma VM formation and confirmed 7k's potential as a novel anti-melanoma agent.

2.
Bioorg Chem ; 151: 107686, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39111120

ABSTRACT

A series of novel quinazoline-derived EGFR/HER-2 dual-target inhibitors were designed and synthesized by heterocyclic-containing tail approach. The inhibitory activities against four human epidermal growth factor receptor (HER) isozymes (EGFR, HER-2, HER-3 and HER-4) of all new compounds so designed were investigated in vitro. Compound 12k was found to be the most effective and rather selective dual-target inhibitor of EGFR and HER-2 with inhibitory constant (IC50) values of 6.15 and 9.78 nM, respectively, which was more potent than the clinical used agent Lapatinib (IC50 = 8.41 and 9.41 nM). Meanwhile, almost all compounds showed excellent antiproliferative activities against four cancer cell models (A549, NCI-H1975, SK-BR-3 and MCF-7) and low damage to healthy cells. Among them, compound 12k also exhibited the most prominent antitumor activity. Moreover, the hit compound 12k could bind to EGFR and HER-2 stably in molecular docking and dynamics studies. The following wound healing assay revealed that compound 12k could inhibit the migration of SK-BR-3 cells. Further studies found that compound 12k could arrest cell cycle in the G0/G1 phase and induce SK-BR-3 cells apoptosis. Notably, compound 12k could effectively inhibit breast cancer growth with little toxicity in the SK-BR-3 cell xenograft model. Taken together, in vitro and in vivo results disclosed that compound 12k had high drug potential as a dual-target inhibitor of EGFR/HER-2 to inhibit breast cancer growth.


Subject(s)
Antineoplastic Agents , Cell Proliferation , Dose-Response Relationship, Drug , Drug Design , Drug Screening Assays, Antitumor , ErbB Receptors , Protein Kinase Inhibitors , Quinazolines , Receptor, ErbB-2 , Humans , ErbB Receptors/antagonists & inhibitors , ErbB Receptors/metabolism , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Quinazolines/pharmacology , Quinazolines/chemistry , Quinazolines/chemical synthesis , Receptor, ErbB-2/antagonists & inhibitors , Receptor, ErbB-2/metabolism , Cell Proliferation/drug effects , Structure-Activity Relationship , Molecular Structure , Animals , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/chemistry , Mice , Cell Line, Tumor , Molecular Docking Simulation , Apoptosis/drug effects , Heterocyclic Compounds/pharmacology , Heterocyclic Compounds/chemistry , Heterocyclic Compounds/chemical synthesis , Female
3.
Arch Pharm (Weinheim) ; 357(10): e2400137, 2024 Oct.
Article in English | MEDLINE | ID: mdl-38963324

ABSTRACT

In our previous study, we reported a series of N-(9,10-anthraquinone-2-carbonyl) amino acid derivatives as novel inhibitors of xanthine oxidase (XO). Recognizing the suboptimal drug-like properties associated with the anthraquinone moiety, we embarked on a nonanthraquinone medicinal chemistry exploration in the current investigation. Through systematic structure-activity relationship (SAR) studies, we identified a series of 4-(isopentyloxy)-3-nitrobenzamide derivatives exhibiting excellent in vitro potency against XO. The optimized compound, 4-isopentyloxy-N-(1H-pyrazol-3-yl)-3-nitrobenzamide (6k), demonstrated exceptional in vitro potency with an IC50 value of 0.13 µM. Compound 6k showed favorable drug-like characteristics with ligand efficiency (LE) and lipophilic ligand efficiency (LLE) values of 0.41 and 3.73, respectively. In comparison to the initial compound 1d, 6k exhibited a substantial 24-fold improvement in IC50, along with a 1.6-fold enhancement in LE and a 3.7-fold increase in LLE. Molecular modeling studies provided insights into the strong interactions of 6k with critical amino acid residues within the active site. Furthermore, in vivo hypouricemic investigations convincingly demonstrated that 6k significantly reduced serum uric acid levels in rats. The MTT results revealed that compound 6k is nontoxic to healthy cells. The gastric and intestinal stability assay demonstrated that compound 6k exhibits good stability in the gastric and intestinal environments. In conclusion, compound 6k emerges as a promising lead compound, showcasing both exceptional in vitro potency and favorable drug-like characteristics, thereby warranting further exploration.


Subject(s)
Enzyme Inhibitors , Xanthine Oxidase , Xanthine Oxidase/antagonists & inhibitors , Xanthine Oxidase/metabolism , Structure-Activity Relationship , Animals , Rats , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/chemistry , Molecular Structure , Male , Anthraquinones/pharmacology , Anthraquinones/chemistry , Anthraquinones/chemical synthesis , Humans , Dose-Response Relationship, Drug , Benzamides/pharmacology , Benzamides/chemical synthesis , Benzamides/chemistry , Rats, Sprague-Dawley , Uric Acid/blood , Drug Discovery , Molecular Docking Simulation
4.
Adv Sci (Weinh) ; 11(33): e2402450, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38952061

ABSTRACT

Discovering new treatments for melanoma will benefit human health. The mechanism by which deoxyhypusine synthase (DHPS) promotes melanoma development remains elucidated. Multi-omics studies have revealed that DHPS regulates m6A modification and maintains mRNA stability in melanoma cells. Mechanistically, DHPS activates the hypusination of eukaryotic translation initiation factor 5A (eIF5A) to assist METTL3 localizing on its mRNA for m6A modification, then promoting METTL3 expression. Structure-based design, synthesis, and activity screening yielded the hit compound GL-1 as a DHPS inhibitor. Notably, GL-1 directly inhibits DHPS binding to eIF5A, whereas GC-7 cannot. Based on the clarification of the mode of action of GL-1 on DHPS, it is found that GL-1 can promote the accumulation of intracellular Cu2+ to induce apoptosis, and antibody microarray analysis shows that GL-1 inhibits the expression of several cytokines. GL-1 shows promising antitumor activity with good bioavailability in a xenograft tumor model. These findings clarify the molecular mechanisms by which DHPS regulates melanoma proliferation and demonstrate the potential of GL-1 for clinical melanoma therapy.


Subject(s)
Cell Proliferation , Melanoma , Methyltransferases , Melanoma/drug therapy , Melanoma/metabolism , Melanoma/genetics , Humans , Animals , Mice , Cell Proliferation/drug effects , Methyltransferases/metabolism , Methyltransferases/genetics , Methyltransferases/antagonists & inhibitors , Methylation/drug effects , Disease Models, Animal , Cell Line, Tumor , Eukaryotic Translation Initiation Factor 5A , Oxidoreductases Acting on CH-NH Group Donors
5.
Eur J Med Chem ; 264: 116028, 2024 Jan 15.
Article in English | MEDLINE | ID: mdl-38086190

ABSTRACT

The occurrence and development of the tumor are very complex biological processes. In recent years, a large number of research data shows that CD73 is closely related to tumor growth and metastasis. It has been confirmed that the cascade hydrolysis of extracellular ATP to adenosine is one of the most important immunosuppressive regulatory pathways in the tumor microenvironment. The metabolite adenosine can mediate immunosuppression by activating adenosine receptor (such as A2A) on effector Immune cells and enable tumor cells to achieve immune escape. Therefore, attenuating or completely removing adenosine-mediated immunosuppression in the tumor microenvironment by inhibiting CD73 is a promising approach in the treatment of solid tumors. This paper focuses on the research progress of CD73 enzyme and CD73 small molecule inhibitors, and is expected to provide some insights into the development of small-molecule antitumor drugs targeting CD73.


Subject(s)
Antineoplastic Agents , Neoplasms , Humans , Neoplasms/metabolism , Adenosine/pharmacology , Adenosine/metabolism , Antineoplastic Agents/pharmacology , Immunosuppressive Agents , Receptors, Purinergic P1 , 5'-Nucleotidase , Tumor Microenvironment
6.
Eur J Med Chem ; 264: 116039, 2024 Jan 15.
Article in English | MEDLINE | ID: mdl-38103540

ABSTRACT

P-glycoprotein (P-gp) is an important factor leading to multidrug resistance (MDR) in cancer treatment. The co-administration of anticancer drugs and P-gp inhibitors has been a treatment strategy to overcome MDR. In recent years, tyrosine kinase inhibitor Lapatinib has been reported to reverse MDR through directly interacting with ABC transporters. In this work, a series of P-gp inhibitors (1-26) was designed and synthesized by integrating the quinazoline core of Lapatinib into the molecule framework of the third-generation P-gp inhibitor Tariquidar. Among them, compound 14 exhibited better MDR reversal activity than Tariquidar. The docking results showed compound 14 displayed the L-shaped molecular conformation. Importantly, compound 14 increased the accumulation of Adriamycin (ADM) and rhodamine 123 (Rh123) in MCF7/ADM cells. Besides, compound 14 significantly increased ADM-induced apoptosis and inhibited the proliferation, migration and invasion of MCF7/ADM cells. It was also demonstrated that compound 14 significantly inhibited the growth of MCF7/ADM xenograft tumors by increasing the sensitivity of ADM. In summary, compound 14 has the potential to overcome MDR caused by P-gp.


Subject(s)
ATP Binding Cassette Transporter, Subfamily B, Member 1 , Antineoplastic Agents , Humans , Lapatinib , Drug Resistance, Neoplasm , Drug Resistance, Multiple , Antineoplastic Agents/pharmacology , ATP Binding Cassette Transporter, Subfamily B , Doxorubicin/pharmacology , Benzamides/pharmacology
7.
Front Biosci (Landmark Ed) ; 28(10): 276, 2023 10 31.
Article in English | MEDLINE | ID: mdl-37919073

ABSTRACT

BACKGROUND: Colon adenocarcinoma (COAD) is a major cause of cancer mortality worldwide. The occurrence and development of colon cancer is regulated by complex mechanisms that require further exploration. Recently, long non-coding RNAs (lncRNAs) were found to be related to the mortality of colon cancer patients through their participation in competing endogenous RNA (ceRNA) networks. Therefore, screening the lncRNAs involved in colon cancer may contribute to clarifying the complex mechanisms. METHODS: In this study, we explored the potential lncRNAs associated with colon cancer by establishing a ceRNA network using bioinformatics, followed by biological verification. RESULTS: RP11-197K6.1 and RP11-400N13.3 were screened out owing to their involvement in the expression of CDK2NA, a gene that potentially prevents colon cancer cells from high oxygen levels. CONCLUSIONS: Our work explored the mechanisms of recurrence and metastasis in colon cancer and provided potential targets for drug development.


Subject(s)
Adenocarcinoma , Colonic Neoplasms , MicroRNAs , RNA, Long Noncoding , Humans , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Adenocarcinoma/genetics , Gene Regulatory Networks , Colonic Neoplasms/genetics , Colonic Neoplasms/pathology , Biomarkers, Tumor/genetics , MicroRNAs/genetics , Gene Expression Regulation, Neoplastic
8.
Biomed Pharmacother ; 167: 115608, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37801902

ABSTRACT

BACKGROUND: Gelsemium elegans (Gardner & Chapm.) Benth (G. elegans) has been widely used as a traditional folk medicine in China and Southeast Asia. As the most abundant alkaloid in G. elegans, Koumine (KM) has been revealed the effect of inflammatory attenuation modulating by macrophage activation and polarization. PURPOSE: This study aimed to explore the effect of KM on modulation of microglia polarization that led to the suppression of neuroinflammation and further improved neurodegenerative behavior. METHODS: Inflammatory mediators, microglia M1 and M2 phenotype markers and Nrf2/HO-1 pathway related protein were assessed in LPS-induced BV2 cells and LPS-treated mice by RT-PCR, immunohistochemistry, immunofluorescence and Western blotting. Moreover, the learning and memory abilities of mice were evaluated by Morris water maze test, and the neuronal damage was evaluated by the Nissl staining. RESULTS: KM attenuated LPS-induced viability and morphological changes in BV2 microglial cells. Our findings showed that KM activated the Nrf2/HO-1 signaling pathway to promote phenotypic switch from M1 to M2 phenotypes. This switch suppresses the release of inflammatory mediators in LPS-induced BV2 cells. Meanwhile, KM attenuated neuroinflammation through modulating microglia polarization and subsequently reversed the behavioral alterations in LPS-induced mice model of neuroinflammation. CONCLUSIONS: KM may alleviate neuroinflammation by regulating microglia polarization with the involvement of Nrf2/HO-1 pathway, resulting of the neuroprotective effect.


Subject(s)
NF-E2-Related Factor 2 , Neuroinflammatory Diseases , Animals , Mice , NF-E2-Related Factor 2/metabolism , Microglia , Inflammation/metabolism , Lipopolysaccharides/pharmacology , Inflammation Mediators/metabolism
9.
Eur J Med Chem ; 258: 115600, 2023 Oct 05.
Article in English | MEDLINE | ID: mdl-37437348

ABSTRACT

Based on previous work, further search for more effective and less damaging thymidylate synthase (TS) inhibitors was the focus of this study. After further optimization of the structure, in this study, a series of (E)-N-(2-benzyl hydrazine-1-carbonyl) phenyl-2,4-deoxy-1,2,3,4-tetrahydro pyrimidine-5-sulfonamide derivatives were synthesized and reported for the first time. All target compounds were screened by enzyme activity assay and cell viability inhibition assay. On the one hand, the hit compound DG1 could bind directly to TS proteins intracellularly and promote apoptosis in A549 and H1975 cells. Simultaneously, DG1 could inhibit cancer tissue proliferation more effectively than Pemetrexed (PTX) in the A549 xenograft mouse model. On the other hand, the inhibitory effect of DG1 on NSCLC angiogenesis was verified both in vivo and in vitro. In parallel, DG1 was further uncovered to inhibit the expression of CD26, ET-1, FGF-1, and EGF by angiogenic factor antibody microarray. Moreover, RNA-seq and PCR-array assays revealed that DG1 could inhibit NSCLC proliferation by affecting metabolic reprogramming. Collectively, these data demonstrated that DG1as a TS inhibitor could be promising in treating NSCLC angiogenesis, deserving further investigation.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Humans , Animals , Mice , Lung Neoplasms/metabolism , Thymidylate Synthase , Cell Line, Tumor , Carcinoma, Non-Small-Cell Lung/metabolism , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/chemistry
10.
Bioorg Chem ; 133: 106403, 2023 04.
Article in English | MEDLINE | ID: mdl-36801790

ABSTRACT

Our previous studies suggested that N-phenyl aromatic amides are a class of promising xanthine oxidase (XO) inhibitor chemotypes. In this effort, several series of N-phenyl aromatic amide derivatives (4a-h, 5-9, 12i-w, 13n, 13o, 13r, 13s, 13t and 13u) were designed and synthesized to carry out an extensive structure-activity relationship (SAR). The investigation provided some valuable SAR information and identified N-(3-(1H-imidazol-1-yl)-4-((2-methylbenzyl)oxy)phenyl)-1H-imidazole-4-carboxamide (12r, IC50 = 0.028 µM) as the most potent XO inhibitor with close in vitro potency to that of topiroxostat (IC50 = 0.017 µM). Molecular docking and molecular dynamics simulation rationalized the binding affinity through a series of strong interactions with the residues Glu1261, Asn768, Thr1010, Arg880, Glu802, etc. In vivo hypouricemic studies also suggested that the uric acid lowering effect of compound 12r was improved compared with the lead g25 (30.61 % vs 22.4 % reduction in uric acid levels at 1 h; 25.91 % vs 21.7 % reduction in AUC of uric acid) . Pharmacokinetic studies revealed that compound 12r presented a short t1/2 of 0.25 h after oral administration. In addition, 12r has non-cytotoxicity against normal cell HK-2. This work may provide some insights for further development of novel amide-based XO inhibitors.


Subject(s)
Nitrogen Radioisotopes , Xanthine Oxidase , Amides/pharmacology , Enzyme Inhibitors/chemistry , Molecular Docking Simulation , Molecular Structure , Structure-Activity Relationship , Uric Acid , Xanthine Oxidase/antagonists & inhibitors
11.
Spectrochim Acta A Mol Biomol Spectrosc ; 286: 121988, 2023 Feb 05.
Article in English | MEDLINE | ID: mdl-36308828

ABSTRACT

Our previous work firstly reported that (E)-2-styrylanthracene-9,10-dione is a novel fluorescent core (EK01) with the ability of specific mitochondria imaging. In this effort, we mainly focused our attention on the structure-photophysical property relationship and application in cells imaging of this new fluorescent chemotype. A series of the structural derivatives (TZ series) were designed and synthesized by introducing some substituents onto the 2-styryl moiety. The structure-photophysical property relationship analysis suggested that TZ03 is an excellent fluorescent molecular building block with the property of fluorescent "turn-on" effect after the modification of acylation, and TZ07 is an excellent fluorescent dye with a series of advantages such as high fluorescence intensity (Fmax = 4049.0 in CH2Cl2, 25.80 µM), moderate molar extinction coefficients (3.77 × 103-5.93 × 103 mol-1∙L∙cm-1), strong fluorescence quantum yield (Φmax = 0.739 in CH2Cl2), large Stokes shift (99.0 nm-161.8 nm) and well biological tolerance. As a classical D-π-A structure, the ICT characteristic of TZ07 was analyzed through spectroscopy verification and DFT calculations. Furthermore, optimized compound TZ07 was successfully applied in the living cells imaging with the excellent selectivity to mitochondria in a green fluorescent form. It was also suggested that the mechanism of TZ07 targeting mitochondria is independent of mitochondrial membrane potential, but probably related to the mitochondrial complex I. These findings may provide some insights into the development of novel mitochondria-targeted fluorescent probes.


Subject(s)
Fluorescent Dyes , Mitochondria , Fluorescent Dyes/chemistry , Fluorescence , Diagnostic Imaging
12.
Antioxidants (Basel) ; 13(1)2023 Dec 20.
Article in English | MEDLINE | ID: mdl-38275631

ABSTRACT

Breast cancer, especially the aggressive triple-negative subtype, poses a serious health threat to women. Unfortunately, effective targets are lacking, leading to a grim prognosis. Research highlights the crucial role of c-MYC overexpression in this form of cancer. Current inhibitors targeting c-MYC focus on stabilizing its G-quadruplex (G4) structure in the promoter region. They can inhibit the expression of c-MYC, which is highly expressed in triple-negative breast cancer (TNBC), and then regulate the apoptosis of breast cancer cells induced by intracellular ROS. However, the clinical prospects for the application of such inhibitors are not promising. In this research, we designed and synthesized 29 acridone derivatives. These compounds were assessed for their impact on intracellular ROS levels and cell activity, followed by comprehensive QSAR analysis and molecular docking. Compound N8 stood out, significantly increasing ROS levels and demonstrating potent anti-tumor activity in the TNBC cell line, with excellent selectivity shown in the docking results. This study suggests that acridone derivatives could stabilize the c-MYC G4 structure. Among these compounds, the small molecule N8 shows promising effects and deserves further investigation.

13.
Bioorg Chem ; 128: 106064, 2022 11.
Article in English | MEDLINE | ID: mdl-35987190

ABSTRACT

Xanthine oxidase (XO) inhibitors are widely used in the control of serum uric acid levels in the clinical management of gout. Our continuous efforts in searching novel amide-based XO inhibitors culminated in the identification of N-(4-((3-cyanobenzyl)oxy)-3-(1H-tetrazol-1-yl)phenyl)isonicotinamide (TS10), which exhibited comparable in vitro inhibition to that of topiroxostat (TS10, IC50 = 0.031 µM; topiroxostat, IC50 = 0.020 µM). According to the molecular modeling, we speculated that, as well as topiroxostat, TS10 would be biotransformed by XO to yield TS10-2-OH. In this work, TS10-2-OH was successfully identified in XO targeted metabolism study, demonstrated that TS10 underwent a covalent binding with XO via a TS10-O-Mo intermediate after anchoring in the XO molybdenum cofactor pocket. Furthermore, TS10-2-OH is a weak active metabolite, and its potency was explained by the molecular docking. In metabolites identification, TS10 could be oxidized by CYP2C9, CYP3A4 and CYP3A5 to generate two mono-hydroxylated metabolites (not TS10-2-OH); and could occur degradation in plasma to mainly generate a hydrolytic metabolite (TS10-hydrolysate). In pharmacokinetic assessment, the low oral system exposure was observed (Cmax = 14.73 ± 2.66 ng/mL and AUClast = 9.17 ± 1.42 h⋅ng/mL), which could be explained by the poor oral absorption property found in excretion studies. Nonetheless, in pharmacodynamic evaluation, TS10 exhibited significant uric acid-lowering effect after oral administration in a dose-dependent manner. Briefly, in addition to allopurinol and topiroxostat, TS10 is possibly another explicitly mechanism-based XO inhibitor with powerful covalent inhibition.


Subject(s)
Uric Acid , Xanthine Oxidase , Allopurinol/pharmacology , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Molecular Docking Simulation , Xanthine Oxidase/metabolism
14.
Bioorg Chem ; 127: 105938, 2022 10.
Article in English | MEDLINE | ID: mdl-35752100

ABSTRACT

Xanthine oxidase (XO) is a flavoprotein that exists in various organisms and can catalyze the uric acid formation in the human body. Based on the amide framework of N-(4-((3-cyanobenzyl)oxy)-3-(1H-tetrazol-1-yl)phenyl)isonicotinamide (compound 1) reported in our previous work, a series of N-(4-alkoxy-3-(1H-tetrazol-1-yl)phenyl) heterocyclic aromatic amide derivatives were designed, synthesized and evaluated as novel amide-based XO inhibitors. Structure-activity relationship campaign identified the most promising compound g25 (IC50 = 0.022 µM), which possesses a special 1H-imidazole-5-carboxamide scaffold and presented comparable XO inhibitory potency to topiroxostat (IC50 = 0.017 µM). Enzyme kinetic studies revealed that compound g25 acted as a mixed-type XO inhibitor. Molecular docking and molecular dynamics indicated that imidazole NH of g25 formed two stable hydrogen bonds with Glu1261 residue of XO that provided a vital contribution for the binding affinity. In addition, in vivo activity evaluation demonstrated that compound g25 exhibited obviously hypouricemic effect on a potassium oxonate induced hyperuricemic rat model.


Subject(s)
Amides , Xanthine Oxidase , Alcohols , Amides/pharmacology , Animals , Drug Design , Enzyme Inhibitors/chemistry , Humans , Imidazoles/pharmacology , Kinetics , Molecular Docking Simulation , Molecular Structure , Rats , Structure-Activity Relationship
15.
Eur J Med Chem ; 237: 114325, 2022 Jul 05.
Article in English | MEDLINE | ID: mdl-35452936

ABSTRACT

Human epidermal growth factor receptor 2 (HER-2) is an essential member of the receptor tyrosine kinase (RTK) superfamily and has been reported as a critical method for treating HER-2 positive breast cancer. Here, we retained (E)-4-methyl-2-(4-(trifluoromethyl)styryl)oxazole, a fragment of HER-2 inhibitor Mubritinib, and synthesized 32 novel compounds from it. We screened out the most potential compound Q7j with HER-2 positive breast cancer cells through MTT assays, which possessed low toxicity on normal cells (MCF7-10A). Subsequently, wound healing, transwell, western blotting, and immunofluorescence experiments were performed, and it was found that compound Q7j could suppress cell migration by inhibiting the phosphorylation of HER-2 and affecting the expression of EMT-related proteins. Moreover, the SKBR3 orthotopic xenograft model confirmed that compound Q7j was more effective than Mubritinib in inhibiting the proliferation of cancer cells. In general, compound Q7j was a potential HER-2 inhibitor in treating breast cancer, which may be of great significance for developing and improving HER-2 small molecule inhibitors.


Subject(s)
Breast Neoplasms , Epithelial-Mesenchymal Transition , Breast Neoplasms/drug therapy , Breast Neoplasms/metabolism , Cell Line, Tumor , Cell Movement , Cell Proliferation , Female , Humans , Protein Kinase Inhibitors/pharmacology
16.
Bioorg Med Chem Lett ; 60: 128582, 2022 03 15.
Article in English | MEDLINE | ID: mdl-35077850

ABSTRACT

A series of 4-(phenoxymethyl)-1H-1,2,3-triazole derivatives were designed, synthesized, and evaluated for their xanthine oxidase (XO) inhibitory activities. Among these compounds, 9m emerged as the most effective XO inhibitor with an IC50 value of 0.70 µM, which was approximately 14-fold more potent than allopurinol. Additionally, compound 9m displayed favorable drug-like properties with ligand efficiency (LE) and lipophilic ligand efficiency (LLE) values of 0.33 and 3.41, respectively. We further explored the binding mode of 9m in complex with XO by molecular docking and molecular dynamics studies. In vivo hypouricemic studies also suggested that 9m could effectively lower the serum uric acid levels of rat. In summary, compound 9m could be a promising lead for further development of XO inhibitors.


Subject(s)
Drug Discovery , Enzyme Inhibitors/pharmacology , Triazoles/pharmacology , Xanthine Oxidase/antagonists & inhibitors , Animals , Dose-Response Relationship, Drug , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/chemistry , Hyperuricemia/chemically induced , Hyperuricemia/drug therapy , Hyperuricemia/metabolism , Ligands , Models, Molecular , Molecular Structure , Oxonic Acid , Rats , Structure-Activity Relationship , Triazoles/chemical synthesis , Triazoles/chemistry , Uric Acid/antagonists & inhibitors , Uric Acid/blood , Xanthine Oxidase/metabolism
17.
Bioorg Chem ; 119: 105469, 2022 02.
Article in English | MEDLINE | ID: mdl-34915285

ABSTRACT

Targeting EGFR and HER-2 is an essential direction for cancer treatment. Here, a series of N-(1,3,4-thiadiazol-2-yl)benzamide derivatives containing a 6,7-methoxyquinoline structure was designed and synthesized to serve as EGFR/HER-2 dual-target inhibitors. The kinase assays verified that target compounds could inhibit the kinase activity of EGFR and HER-2 selectively. The results of CCK-8 and 3D cell viability assays confirmed that target compounds had excellent anti-proliferation ability against breast cancer cells (MCF-7 and SK-BR-3) and lung cancer cells (A549 and H1975), particularly against SK-BR-3 cells, while the inhibitory effect on healthy breast cells (MCF-10A) and lung cells (Beas-2B) was weak. Among them, the hit compound YH-9 binded to EGFR and HER-2 stably in molecular dynamics studies. Further studies found thatYH-9could induce the release of cytochrome c and inhibit proliferation by promoting ROS expression in SK-BR-3 cells. Moreover,YH-9could diminish the secretion of VEGF and bFGF factors in SK-BR-3 cells, then inhibited tube formation and angiogenesis. Notably,YH-9could effectively inhibit breast cancer growth and angiogenesis with little toxicity in the SK-BR-3 cell xenograft model. Taken together,in vitroandin vivoresults revealed that YH-9 had high drug potential as a dual-target inhibitor of EGFR/HER-2 to inhibit breast cancer growth and angiogenesis.


Subject(s)
Antineoplastic Agents/pharmacology , Benzamides/pharmacology , Drug Discovery , Neovascularization, Pathologic/drug therapy , Protein Kinase Inhibitors/pharmacology , Thiadiazoles/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Benzamides/chemical synthesis , Benzamides/chemistry , Cell Proliferation/drug effects , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , ErbB Receptors/antagonists & inhibitors , ErbB Receptors/metabolism , Humans , Molecular Structure , Neovascularization, Pathologic/pathology , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/chemistry , Receptor, ErbB-2/antagonists & inhibitors , Receptor, ErbB-2/metabolism , Structure-Activity Relationship , Thiadiazoles/chemical synthesis , Thiadiazoles/chemistry , Tumor Cells, Cultured
18.
Bioorg Chem ; 119: 105547, 2022 02.
Article in English | MEDLINE | ID: mdl-34906858

ABSTRACT

CDK4/6 were attractive chemotherapeutic targets for the treatment of malignant tumors, CDK4/6 selective inhibitors have made outstanding contributions in the treatment of breast cancer. However, these inhibitors share a single skeleton of N-(pyridin-2-yl) pyrimidin-2-amine which cannot overcome the side effects in clinical application. In our previous study, an N'- acetylpyrrolidine-1-carbohydrazide was hit as the initial fragment by analyzing the active site characteristics of CDK6. Two series of N-(pyridin-3-yl) proline were obtained by fragment growth method. The QSAR study was carried out according to the in vitro activities data against CDK4/6, and two compounds 7c and 7p with potent inhibitory activities were found to interact with CDK4 in different binding conformation. They showed potential inhibition of cell proliferation against the breast cancer cell, and 7c exhibited promised anti-breast cancer effect in vivo.


Subject(s)
Antineoplastic Agents/pharmacology , Breast Neoplasms/drug therapy , Cyclin-Dependent Kinase 4/antagonists & inhibitors , Cyclin-Dependent Kinase 6/antagonists & inhibitors , Proline/pharmacology , Protein Kinase Inhibitors/pharmacology , Animals , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Cell Proliferation/drug effects , Cell Survival/drug effects , Cyclin-Dependent Kinase 4/metabolism , Cyclin-Dependent Kinase 6/metabolism , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Female , Humans , MCF-7 Cells , Mammary Neoplasms, Experimental/drug therapy , Mammary Neoplasms, Experimental/metabolism , Mammary Neoplasms, Experimental/pathology , Mice , Mice, Nude , Molecular Structure , Proline/chemical synthesis , Proline/chemistry , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/chemistry , Structure-Activity Relationship
20.
Bioorg Chem ; 117: 105417, 2021 12.
Article in English | MEDLINE | ID: mdl-34673452

ABSTRACT

Our previous work identified a promising isonicotinamide based xanthine oxidase (XO) inhibitor, N-(3-cyano-4-((2-cyanobenzyl)oxy)phenyl)isonicotinamide (1), and concluded that amide is an effective linker in exploring the XO inhibitor chemical space that is completely different from the five-membered ring framework of febuxostat and topiroxostat. Indole, an endogenous bioactive substance and a popular drug construction fragment, was involved in the structural optimization campaign of the present effort. After the installation of some functional groups, N-(1-alkyl-3-cyano-1H-indol-5-yl) was generated and employed to mend the missing H-bond interaction between the 3'-cyano of 1 and Asn768 residue of XO by shortening their distance. In this context, eight kinds of heterocyclic aromatic amide chemotypes were rationally designed and synthesized to investigate the structure-activity relationship (SAR) of amide-based XO inhibitors. The optimized compound a6 (IC50 = 0.018 µM) exhibits 17.2-fold improved potency than the initial compound 1 (IC50 = 0.31 µM). Its potency is comparable to that of topiroxostat (IC50 = 0.013 µM). Molecular docking and molecular dynamics studies proved the existence of the stable H-bond between the cyano group and the Asn768 residue. Moreover, oral administration of a6 (11.8 mg/kg) could effectively reduce serum uric acid levels in an acute hyperuricemia rat model. Liver microsomal stability assay illustrated that compound a6 possesses well metabolic stability in rat liver microsomes. However, the in vivo potency of a6 was much lower than that of topiroxostat, which may be explained by the poor absorption found in the parallel artificial membrane permeability assay (PAMPA). In addition, 6a has non-cytotoxicity against normal cell lines MCF10A and 16HBE. Taken together, this work culminated in the identification of compound 6a as an excellent lead for further exploration of amide-based XO inhibitors.


Subject(s)
Amides/pharmacology , Drug Design , Enzyme Inhibitors/pharmacology , Indoles/pharmacology , Xanthine Oxidase/antagonists & inhibitors , Amides/chemistry , Amides/metabolism , Animals , Cattle , Dose-Response Relationship, Drug , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/metabolism , Female , Indoles/chemistry , Male , Microsomes, Liver/chemistry , Microsomes, Liver/metabolism , Milk/enzymology , Models, Molecular , Molecular Structure , Rats , Rats, Sprague-Dawley , Structure-Activity Relationship , Xanthine Oxidase/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL