Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 519
Filter
1.
Int J Biol Sci ; 20(10): 3823-3841, 2024.
Article in English | MEDLINE | ID: mdl-39113706

ABSTRACT

Macrophages show high plasticity and play a vital role in the progression of metabolic dysfunction-associated steatohepatitis (MASH). X-box binding protein 1 (XBP1), a key sensor of the unfolded protein response, can modulate macrophage-mediated pro-inflammatory responses in the pathogenesis of MASH. However, how XBP1 influences macrophage plasticity and promotes MASH progression remains unclear. Herein, we formulated an Xbp1 siRNA delivery system based on folic acid modified D-α-tocopheryl polyethylene glycol 1000 succinate nanoparticles (FT@XBP1) to explore the precise role of macrophage-specific Xbp1 deficiency in the progression of MASH. FT@XBP1 was specifically internalized into hepatic macrophages and subsequently inhibited the expression of spliced XBP1 both in vitro and in vivo. It promoted M1-phenotype macrophage repolarization to M2 macrophages, reduced the release of pro-inflammatory factors, and alleviated hepatic steatosis, liver injury, and fibrosis in mice with fat-, fructose- and cholesterol-rich diet-induced MASH. Mechanistically, FT@XBP1 promoted macrophage polarization toward the M2 phenotype and enhanced the release of exosomes that could inhibit the activation of hepatic stellate cells. A promising macrophage-targeted siRNA delivery system was revealed to pave a promising strategy in the treatment of MASH.


Subject(s)
Folic Acid , Macrophages , RNA, Small Interfering , X-Box Binding Protein 1 , Animals , Male , Mice , Endoplasmic Reticulum Stress/drug effects , Fatty Liver/metabolism , Folic Acid/chemistry , Macrophages/metabolism , Macrophages/drug effects , Mice, Inbred C57BL , Nanoparticles/chemistry , X-Box Binding Protein 1/metabolism
2.
BMC Musculoskelet Disord ; 25(1): 641, 2024 Aug 14.
Article in English | MEDLINE | ID: mdl-39143482

ABSTRACT

BACKGROUND: This study was to explore the relationship between cardiovascular health (CVH) and the risk of all-cause mortality in patients with osteoarthritis (OA). METHODS: This cohort study retrieved the data of 3642 patients with OA aged ≥ 20 years from the 2007-2018 National Health and Nutrition Examination Survey (NHANES). CVH was evaluated based on Life's Essential 8 (LE8) includes diet, physical activity, nicotine exposure, sleep health, body mass index, blood lipids, blood glucose, and blood pressure. The outcome of all-cause mortality was assessed using the death certificate records of participants from the National Death Index. Variables that might affect all-cause mortality were used as covariates. The weighted univariate COX proportional hazards model was used to explore the association between each covariate and all-cause mortality. The weighted univariate and multivariate COX proportional hazards models were used to explore the association between different CVH levels and all-cause mortality. A restricted cubic spline (RCS) curve was plotted to show the association between different CVH levels and all-cause mortality in OA patients. Hazard ratio (HR) and 95% confidence interval (CI) were calculated. RESULTS: Findings show that people with moderate CVH (HR = 0.67, 95% CI = 0.45-0.98) and high CVH (HR = 0.47, 95% CI = 0.26-0.87) were associated with reduced risk of all-cause mortality in patients with OA. The HR of all-cause mortality in patients with OA decreased by 0.12 as per 10 points increase of LE8 score (HR = 0.81, 95% CI = 0.73-0.90). The RCS curve revealed that the HR of all-cause mortality decreased with the increase in LE8 score. The survival probability of patients in the high CVH group was higher than the moderate CVH group and low CVH group (p = 0.002). CONCLUSION: Moderate-to-high CVH is associated with a decreased risk of all-cause mortality in patients with OA. These findings might provide a reference for the formulation of prognosis improvement strategies for the management of patients with OA.


Subject(s)
Cardiovascular Diseases , Nutrition Surveys , Osteoarthritis , Humans , Male , Female , Osteoarthritis/mortality , Middle Aged , Aged , Cardiovascular Diseases/mortality , Adult , Cause of Death , Risk Factors , Cohort Studies , Proportional Hazards Models
3.
Huan Jing Ke Xue ; 45(8): 4696-4708, 2024 Aug 08.
Article in Chinese | MEDLINE | ID: mdl-39168688

ABSTRACT

Accurately assessing the changes in soil organic carbon storage (SOCS) before and after the Grain for Green Project (GFG) in the Loess Plateau (LP) and exploring the relationship between its spatial and temporal distribution and the influencing factors were important references for the development of regional recycling as well as the formulation of ecological protection policies. Based on the data of climate, human activities, and SOCD in the surface (0-20 cm) and deep (0-100 cm) soil before and after GFG in the LP from 2001 to 2020, we investigated the changes in SOCD at different spatial and temporal scales by using the methods of trend analysis, the kriging method, and variance partitioning analysis. The results showed that: ① Before and after the GFG, the surface SOCS of the whole region increased by 8 338.7×104 t; the deep SOCS increased by 1 160.02×104 t. ② In each bioclimatic subregion, the whole-region average SOCD of Ⅰ (Semi-Humid Forest Region), Ⅱ (Semi-Humid Semi-Arid Forest and Grassland Region), and Ⅲ (Semi-Arid Typical Grassland Region) showed a significant increasing trend, with a decreasing trend in Ⅳ (arid semi-arid desert grassland area) and Ⅴ (arid desert area). ③ The average surface SOCS increase in different ecosystems was ranked as follows: cropland > grassland > woodland > shrubs > bare land and sparse vegetation. The deep soil increase was ranked as follows: grassland > cropland > woodland > shrubs > bare land and sparse vegetation. ④ Climate factors were the most important driving factors for changes in SOCD; the annual average temperature and precipitation were significantly positively correlated with changes in SOCD. The results of the study could provide data support for regional ecological management and land use policy formulation to promote high quality development of the ecological environment in the LP.


Subject(s)
Carbon , Climate Change , Soil , Soil/chemistry , China , Carbon/analysis , Organic Chemicals/analysis , Conservation of Natural Resources , Human Activities , Forests , Ecosystem , Environmental Monitoring/methods , Altitude , Grassland , Carbon Sequestration , Humans , Crops, Agricultural/growth & development
4.
World J Gastrointest Surg ; 16(7): 2270-2280, 2024 Jul 27.
Article in English | MEDLINE | ID: mdl-39087098

ABSTRACT

BACKGROUND: Colorectal cancer (CRC) is one of the most common malignant tumors, and early screening is crucial to improving the survival rate of patients. The combination of colonoscopy and immune fecal occult blood detection has garnered significant attention as a novel method for CRC screening. Colonoscopy and fecal occult blood tests, when combined, can improve screening accuracy and early detection rates, thereby facilitating early intervention and treatment. However, certain risks and costs accompany it, making the establishment of a risk classification model crucial for accurate classification and management of screened subjects. AIM: To evaluate the feasibility and effectiveness of colonoscopy, immune fecal occult blood test (FIT), and risk-graded screening strategies in CRC screening. METHODS: Based on the randomized controlled trial of CRC screening in the population conducted by our hospital May 2020 to May 2023, participants who met the requirements were randomly assigned to a colonoscopy group, an FIT group, or a graded screening group at a ratio of 1:2:2 (after risk assessment, the high-risk group received colonoscopy, the low-risk group received an FIT test, and the FIT-positive group received colonoscopy). The three groups received CRC screening with different protocols, among which the colonoscopy group only received baseline screening, and the FIT group and the graded screening group received annual follow-up screening based on baseline screening. The primary outcome was the detection rate of advanced tumors, including CRC and advanced adenoma. The population participation rate, advanced tumor detection rate, and colonoscopy load of the three screening programs were compared. RESULTS: A total of 19373 subjects who met the inclusion and exclusion criteria were enrolled, including 8082 males (41.7%) and 11291 females (58.3%). The mean age was 60.05 ± 6.5 years. Among them, 3883 patients were enrolled in the colonoscopy group, 7793 in the FIT group, and 7697 in the graded screening group. Two rounds of follow-up screening were completed in the FIT group and the graded screening group. The graded screening group (89.2%) and the colonoscopy group (42.3%) had the lowest overall screening participation rates, while the FIT group had the highest (99.3%). The results of the intentional analysis showed that the detection rate of advanced tumors in the colonoscopy group was greater than that of the FIT group [2.76% vs 2.17%, odds ratio (OR) = 1.30, 95% confidence interval (CI): 1.01-1.65, P = 0.037]. There was no significant difference in the detection rate of advanced tumors between the colonoscopy group and the graded screening group (2.76% vs 2.35%, OR = 1.9, 95%CI: 0.93-1.51, P = 0.156), as well as between the graded screening group and the FIT group (2.35% vs 2.17%, OR = 1.09%, 95%CI: 0.88-1.34, P = 0.440). The number of colonoscopy examinations required for each patient with advanced tumors was used as an index to evaluate the colonoscopy load during population screening. The graded screening group had the highest colonoscopy load (15.4 times), followed by the colonoscopy group (10.2 times), and the FIT group had the lowest (7.8 times). CONCLUSION: A hierarchical screening strategy based on CRC risk assessment is feasible for screening for CRC in the population. It can be used as an effective supplement to traditional colonoscopy and FIT screening programs.

5.
Exp Ther Med ; 28(4): 372, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39091629

ABSTRACT

Preeclampsia (PE) is a hypertensive disorder of pregnancy characterized by new-onset hypertension and proteinuria after 20 weeks of gestation, which affects 3-8% of pregnant individuals worldwide each year. Prevention, diagnosis and treatment of PE are some of the most important problems faced by obstetrics. There is growing evidence that circular RNAs (circRNAs) are involved in the pathogenesis of PE. The present review summarizes the research progress of circRNAs and then describes the expression patterns of circRNAs in PE and their functional mechanisms affecting PE development. The role of circRNAs as biomarkers for the diagnosis of PE, and the research status of circRNAs in PE are summarized in the hope of finding novel strategies for the prevention and treatment of PE.

6.
Cell Biol Int ; 2024 Aug 27.
Article in English | MEDLINE | ID: mdl-39192561

ABSTRACT

Hepatocellular carcinoma (HCC) is the sixth most common malignant tumor, highlighting a significant need for reliable predictive models to assess clinical prognosis, disease progression, and drug sensitivity. Recent studies have highlighted the critical role of various programmed cell death pathways, including apoptosis, necroptosis, pyroptosis, ferroptosis, cuproptosis, entotic cell death, NETotic cell death, parthanatos, lysosome-dependent cell death, autophagy-dependent cell death, alkaliptosis, oxeiptosis, and disulfidptosis, in tumor development. Therefore, by investigating these pathways, we aimed to develop a predictive model for HCC prognosis and drug sensitivity. We analyzed transcriptome, single-cell transcriptome, genomic, and clinical information using data from the TCGA-LIHC, GSE14520, GSE45436, and GSE166635 datasets. Machine learning algorithms were used to establish a cell death index (CDI) with seven gene signatures, which was validated across three independent datasets, showing that high CDI correlates with poorer prognosis. Unsupervised clustering revealed three molecular subtypes of HCC with distinct biological processes. Furthermore, a nomogram integrating CDI and clinical information demonstrated good predictive performance. CDI was associated with immune checkpoint genes and tumor microenvironment components using single-cell transcriptome analysis. Drug sensitivity analysis indicated that patients with high CDI may be resistant to oxaliplatin and cisplatin but sensitive to axitinib and sorafenib. In summary, our model offers a precise prediction of clinical outcomes and drug sensitivity for patients with HCC, providing valuable insights for personalized treatment strategies.

7.
Sensors (Basel) ; 24(16)2024 Aug 18.
Article in English | MEDLINE | ID: mdl-39205029

ABSTRACT

In the field of wireless communication, transmitter localization technology is crucial for achieving accurate source tracking. However, the extant methodologies for localization face numerous challenges in wireless sensor networks (WSNs), particularly due to the constraints posed by the sparse distribution of sensors across large areas. We present DSLoc, a deep learning-based approach for transmitter localization in sparse WSNs. Our method is based on an improved high-resolution network model in neural networks. To address localization in sparse wireless sensor networks, we design efficient feature enhancement modules, and propose to locate transmitter locations in the heatmap using an image centroid-based method. Experiments conducted on WSNs with a 0.01% deployment density demonstrate that, compared to existing deep learning models, our method significantly reduces the transmitter miss rate and improves the localization accuracy by more than double. The results indicate that the proposed method offers more accurate and robust performance in sparse WSN environments.

8.
J Med Chem ; 67(17): 15620-15675, 2024 Sep 12.
Article in English | MEDLINE | ID: mdl-39172133

ABSTRACT

Acinetobacter baumannii, a commonly multidrug-resistant Gram-negative bacterium responsible for large numbers of bloodstream and lung infections worldwide, is increasingly difficult to treat and constitutes a growing threat to human health. Structurally novel antibacterial chemical matter that can evade existing resistance mechanisms is essential for addressing this critical medical need. Herein, we describe our efforts to inhibit the essential A. baumannii lipooligosaccharide (LOS) ATP-binding cassette (ABC) transporter MsbA. An unexpected impurity from a phenotypic screening was optimized as a series of dimeric compounds, culminating with 1 (cerastecin D), which exhibited antibacterial activity in the presence of human serum and a pharmacokinetic profile sufficient to achieve efficacy against A. baumannii in murine septicemia and lung infection models.


Subject(s)
ATP-Binding Cassette Transporters , Acinetobacter Infections , Acinetobacter baumannii , Anti-Bacterial Agents , Bacterial Proteins , Lipopolysaccharides , Acinetobacter baumannii/drug effects , Acinetobacter baumannii/metabolism , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Animals , Lipopolysaccharides/metabolism , Lipopolysaccharides/antagonists & inhibitors , Mice , Humans , Bacterial Proteins/antagonists & inhibitors , Bacterial Proteins/metabolism , ATP-Binding Cassette Transporters/antagonists & inhibitors , ATP-Binding Cassette Transporters/metabolism , Acinetobacter Infections/drug therapy , Acinetobacter Infections/microbiology , Microbial Sensitivity Tests
9.
Small ; : e2402656, 2024 Aug 14.
Article in English | MEDLINE | ID: mdl-39140196

ABSTRACT

The escalating misuse of antipyretic and analgesic drugs, alongside the rising incidents of acute drug-induced liver injury, underscores the need for a precisely targeted drug delivery system. Herein, two isoreticular covalent organic frameworks (Se-COF and Se-BCOF) are developed by Schiff-base condensation of emissive tetraphenylethylene and diselenide-bridged monomers. Leveraging the specific affinity of macrophages for mannose, the first precise targeting of these COFs to liver macrophages is achieved. The correlation is also explored between the therapeutic effects of COFs and the NLRP3/ASC/Caspase-1 signaling pathway. Utilizing this innovative delivery vehicle, the synergistic delivery of matrine and berberine are accomplished, compounds extracted from traditional Chinese medicine. This approach not only demonstrated the synergistic effects of the drugs but also mitigated their toxicity. Notably, berberine, through phosphorylation of JNK and up-regulation of nuclear Nrf-2 and its downstream gene Mn-SOD expression, simultaneously countered excessive ROS and suppressed the activation of the NLRP3/ASC/Caspase-1 signaling pathway in injured liver tissues. This multifaceted approach proved highly effective in safeguarding against acute drug-induced liver injury, ultimately restoring liver health to normalcy. These findings present a novel and promising strategy for the treatment of acute drug-induced liver injury.

10.
Mol Cancer Ther ; 2024 Jul 31.
Article in English | MEDLINE | ID: mdl-39082754

ABSTRACT

The emergence of trastuzumab deruxtecan (T-DXd), a new-generation antibody-drug conjugate (ADC), has profoundly altered the therapeutic paradigm for HER2-positive solid tumors, demonstrating remarkable clinical benefits. However, the combined outcomes of T-DXd with immunotherapy agents remain ambiguous. In this study, we introduce Tras-DXd-MTL1, an innovative HER2 targeting ADC that integrates the topoisomerase inhibitor DXd and a toll-like receptor 7 (TLR7) agonist MTT-5, linked to trastuzumab via a GGFG tetrapeptide linker. Mechanistically, Tras-DXd-MTL1 retains the DNA-damaging and cell-killing properties of topoisomerase inhibitors while simultaneously enhancing the immune response within the tumor microenvironment (TME). This is achieved by promoting immune cell infiltration and activating dendritic cells and CD8+T cells via MTT-5. In vivo evaluation of Tras-DXd-MTL1's anti-tumor potency revealed a notably superior performance compared to the T-DXd (Tras-DXd) or Tras-MTL1 in immunocompetent mice with trastuzumab-resistant EMT6-HER2 tumor and immunodeficient mice with JIMT-1 tumor. This improved efficacy is primarily attributed to its dual functions of immune stimulation and cytotoxicity. Our findings highlight the potential of incorporating immunostimulatory agents into ADC design to potentiate antitumor effects and establish durable immune memory, thereby reducing tumor recurrence risks. Therefore, our study offers a novel strategy for the design of immune-activating ADCs and provides a potential approach for targeting solid tumors with different levels of HER2 expression.

11.
Am J Clin Nutr ; 120(3): 481-490, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39025328

ABSTRACT

BACKGROUND: Emerging evidence suggested that S-adenosylhomocysteine (SAH) may be a better serum biomarker for cardiovascular disease than homocysteine (Hcy). However, the role of SAH in hepatocellular carcinoma (HCC) prognosis remains unclear. OBJECTIVES: We aimed to prospectively explore the relationships between serum SAH and related metabolites [Hcy, S-adenosylmethionine (SAM)] with HCC survival, and to evaluate the effect modifications by gene polymorphisms in one-carbon metabolism key enzymes. METHODS: We included 1080 newly diagnosed patients with HCC from the Guangdong Liver Cancer Cohort. Serum SAH, Hcy, and SAM were measured utilizing high-performance liquid chromatography-tandem mass spectrometry. Gene polymorphisms in one-carbon metabolism key enzymes were identified using kompetitive allele-specific polymerase chain reaction. Primary outcomes were liver cancer-specific survival (LCSS) and overall survival (OS). Hazard ratios (HRs) and 95% confidence intervals (CIs) were computed using multivariate Cox proportional hazards models. RESULTS: After a median follow-up of 3.6 y, 601 deaths occurred, with 552 (92%) attributed to HCC. Multivariable analysis revealed that patients in the highest quartile of serum SAH concentrations were significantly associated with worse survival compared with those in the lowest quartile, with HRs of 1.58 (95% CI: 1.19, 2.10; P-trend = 0.002) for LCSS and 1.54 (95% CI: 1.18, 2.02; P-trend = 0.001) for OS. There were no significant interactions between serum SAH concentrations and genetic variants of one-carbon metabolism key enzymes. No significant associations were found between serum Hcy, SAM concentrations, and SAM/SAH ratio with LCSS or OS. CONCLUSIONS: Higher serum SAH concentrations, rather than Hcy, were independently associated with worse survival in patients with HCC, regardless of the genetic variants of one-carbon metabolism key enzymes. These findings suggest that SAH may be a novel metabolism-related prognostic biomarker for HCC.


Subject(s)
Carcinoma, Hepatocellular , Homocysteine , Liver Neoplasms , S-Adenosylhomocysteine , Humans , Carcinoma, Hepatocellular/blood , Carcinoma, Hepatocellular/mortality , Liver Neoplasms/blood , Liver Neoplasms/mortality , S-Adenosylhomocysteine/blood , Male , Female , Homocysteine/blood , Middle Aged , Prospective Studies , Aged , S-Adenosylmethionine/blood , Cohort Studies , Prognosis
12.
Sci Rep ; 14(1): 15630, 2024 Jul 07.
Article in English | MEDLINE | ID: mdl-38972905

ABSTRACT

In the geothermal development of hot dry rock (HDR), both the drilling of the wellbore and the heat exchange of the heat reservoir involve the effects of different cold and hot conditions on the high-temperature rock mass. The testing machine for rock mechanics was used to conduct a uniaxial compression test and carry out micro testing on the treated samples; furthermore, with the help of scanning electron microscopy the fracture mechanism of granite subjected to different temperatures and cooling methods was studied. The results show: (1) With the gradual increase in temperature, the compressive strength of granite under the two cooling methods gradually decreases. (2) The failure modes of the samples under the two cooling methods are mainly shear failure of the "Y" type. The degree of damage of the sample under water cooling is significantly greater than that under natural cooling. Electron micrographs could confirm these results. (3) It can be obtained by testing the mineral composition and element changes of granite at different temperatures. When the temperature reaches 600℃, its change is more pronounced. The results of this study can provide a theoretical reference for the failure of the wellbore and the degree of fracture of the thermal reservoir rock mass during geothermal development.

13.
J Cardiothorac Surg ; 19(1): 386, 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38926779

ABSTRACT

BACKGROUND: Computed tomography (CT)-guided biopsy (CTB) procedures are commonly used to aid in the diagnosis of pulmonary nodules (PNs). When CTB findings indicate a non-malignant lesion, it is critical to correctly determine false-negative results. Therefore, the current study was designed to construct a predictive model for predicting false-negative cases among patients receiving CTB for PNs who receive non-malignant results. MATERIALS AND METHODS: From January 2016 to December 2020, consecutive patients from two centers who received CTB-based non-malignant pathology results while undergoing evaluation for PNs were examined retrospectively. A training cohort was used to discover characteristics that predicted false negative results, allowing the development of a predictive model. The remaining patients were used to establish a testing cohort that served to validate predictive model accuracy. RESULTS: The training cohort included 102 patients with PNs who showed non-malignant pathology results based on CTB. Each patient underwent CTB for a single nodule. Among these patients, 85 and 17 patients, respectively, showed true negative and false negative PNs. Through univariate and multivariate analyses, higher standardized maximum uptake values (SUVmax, P = 0.001) and CTB-based findings of suspected malignant cells (P = 0.043) were identified as being predictive of false negative results. Following that, these two predictors were combined to produce a predictive model. The model achieved an area under the receiver operating characteristic curve (AUC) of 0.945. Furthermore, it demonstrated sensitivity and specificity values of 88.2% and 87.1% respectively. The testing cohort included 62 patients, each of whom had a single PN. When the developed model was used to evaluate this testing cohort, this yielded an AUC value of 0.851. CONCLUSIONS: In patients with PNs, the predictive model developed herein demonstrated good diagnostic effectiveness for identifying false-negative CTB-based non-malignant pathology data.


Subject(s)
Image-Guided Biopsy , Lung Neoplasms , Multiple Pulmonary Nodules , Tomography, X-Ray Computed , Humans , Male , Female , Retrospective Studies , Middle Aged , Image-Guided Biopsy/methods , Tomography, X-Ray Computed/methods , Multiple Pulmonary Nodules/pathology , Multiple Pulmonary Nodules/diagnostic imaging , Multiple Pulmonary Nodules/diagnosis , False Negative Reactions , Lung Neoplasms/pathology , Lung Neoplasms/diagnosis , Lung Neoplasms/diagnostic imaging , Aged , Solitary Pulmonary Nodule/pathology , Solitary Pulmonary Nodule/diagnostic imaging , Solitary Pulmonary Nodule/diagnosis , Predictive Value of Tests , Adult
14.
Sci Total Environ ; 941: 173657, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38838997

ABSTRACT

Epidemiological findings have determined the linkage of fine particulate matter (PM2.5) and the morbidity of hypertension. However, the mode of action and specific contribution of PM2.5 component in the blood pressure elevation remain unclear. Platelets are critical for vascular homeostasis and thrombosis, which may be involved in the increase of blood pressure. Among 240 high-PM2.5 exposed, 318 low-PM2.5 exposed workers in a coking plant and 210 workers in the oxygen plant and cold-rolling mill enrolled in present study, both internal and external exposure characteristics were obtained, and we performed linear regression, adaptive elastic net regression, quantile g-computation and mediation analyses to analyze the relationship between urine metabolites of polycyclic aromatic hydrocarbons (PAHs) and metals fractions with platelets indices and blood pressure indicators. We found that PM2.5 exposure leads to increased systolic blood pressure (SBP) and pulse pressure (PP). Specifically, for every 10 µg/m3 increase in PM2.5, there was a 0.09 mmHg rise in PP. Additionally, one IQR increase in urinary 1-hydroxypyrene (1.06 µmol/mol creatinine) was associated with a 3.43 % elevation in PP. Similarly, an IQR increment of urine cobalt (2.31 µmol/mol creatinine) was associated with a separate 1.77 % and 4.71 % elevation of SBP and PP. Notably, platelet-to-lymphocyte ratio (PLR) played a mediating role in the elevation of SBP and PP induced by cobalt. Our multi-pollutants results showed that PAHs and cobalt were deleterious contributors to the elevated blood pressure. These findings deepen our understanding of the cardiovascular effects associated with PM2.5 constituents, highlighting the importance of increased vigilance in monitoring and controlling the harmful components in PM2.5.


Subject(s)
Air Pollutants , Blood Pressure , Particulate Matter , Polycyclic Aromatic Hydrocarbons , Particulate Matter/analysis , Humans , Blood Pressure/drug effects , Male , Blood Platelets/drug effects , Adult , Metals/urine , Female , Occupational Exposure/statistics & numerical data , Middle Aged , Hypertension/epidemiology
15.
Colloids Surf B Biointerfaces ; 241: 114029, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38878663

ABSTRACT

Pickering emulsions provide a promising platform for the efficient delivery of bioactive. However, co-delivery of fragile bioactives with different physicochemical properties for comprehensive effects still faces practical challenges due to the limited protection for bioactives and the lack of stimuli-responsive property for on-demand release. Herein, a stimuli-responsive co-delivery system is developed based on biomineralized particles stabilized Pickering emulsions. In this tailor co-delivery system, hydrophilic bioactive (pepsin) with the fragile structure is encapsulated and immobilized by biomineralization, the obtained biomineralized particles (PPS@CaCO3) are further utilized as emulsifiers to form O/W Pickering emulsions, in which the hydrophobic oxidizable bioactive (curcumin) is stably trapped into the dispersed phase. The results show that two bioactives are successfully co-encapsulated in Pickering emulsions, and benefiting from the protection capacities of biomineralization and Pickering emulsions, the activity of pepsin and curcumin shows a 7.33-fold and 144.83-fold enhancement compared to the free state, respectively. Moreover, In vitro study demonstrates that Pickering emulsions enable to co-release of two bioactives with high activity retention by the acid-induced hydrolyzation of biomineralized particles. This work provides a powerful stimuli-responsive platform for the co-delivery of multiple bioactive compounds, enabling high activity of bioactives for the comprehensive health effects.


Subject(s)
Curcumin , Emulsifying Agents , Emulsions , Particle Size , Emulsions/chemistry , Emulsifying Agents/chemistry , Curcumin/chemistry , Curcumin/pharmacology , Hydrophobic and Hydrophilic Interactions , Drug Carriers/chemistry , Drug Delivery Systems , Calcium Carbonate/chemistry , Pepsin A/chemistry , Pepsin A/metabolism , Humans , Surface Properties , Drug Liberation , Biomineralization/drug effects
16.
Methods ; 227: 17-26, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38705502

ABSTRACT

Messenger RNA (mRNA) is vital for post-transcriptional gene regulation, acting as the direct template for protein synthesis. However, the methods available for predicting mRNA subcellular localization need to be improved and enhanced. Notably, few existing algorithms can annotate mRNA sequences with multiple localizations. In this work, we propose the mRNA-CLA, an innovative multi-label subcellular localization prediction framework for mRNA, leveraging a deep learning approach with a multi-head self-attention mechanism. The framework employs a multi-scale convolutional layer to extract sequence features across different regions and uses a self-attention mechanism explicitly designed for each sequence. Paired with Position Weight Matrices (PWMs) derived from the convolutional neural network layers, our model offers interpretability in the analysis. In particular, we perform a base-level analysis of mRNA sequences from diverse subcellular localizations to determine the nucleotide specificity corresponding to each site. Our evaluations demonstrate that the mRNA-CLA model substantially outperforms existing methods and tools.


Subject(s)
Deep Learning , RNA, Messenger , RNA, Messenger/genetics , RNA, Messenger/metabolism , Computational Biology/methods , Neural Networks, Computer , Humans , Algorithms
17.
BMC Geriatr ; 24(1): 463, 2024 May 27.
Article in English | MEDLINE | ID: mdl-38802730

ABSTRACT

OBJECTIVE: Based on resting-state electroencephalography (EEG) evidence, this study aimed to explore the relationship and pathways between EEG-mediated physical function and cognitive function in older adults with cognitive impairment. METHODS: A total of 140 older adults with cognitive impairment were recruited, and data on their physical function, cognitive function, and EEG were collected. Pearson correlation analysis, one-way analysis of variance, linear regression analysis, and structural equation modeling analysis were conducted to explore the relationships and pathways among variables. RESULTS: FP1 theta (effect size = 0.136, 95% CI: 0.025-0.251) and T4 alpha2 (effect size = 0.140, 95% CI: 0.057-0.249) were found to significantly mediate the relationship. The direct effect (effect size = 0.866, 95% CI: 0.574-1.158) and total effect (effect size = 1.142, 95% CI: 0.848-1.435) of SPPB on MoCA were both significant. CONCLUSION: Higher physical function scores in older adults with cognitive impairment were associated with higher cognitive function scores. Left frontal theta and right temporal alpha2, as key observed indicators, may mediate the relationship between physical function and cognitive function. It is suggested to implement personalized exercise interventions based on the specific physical function of older adults, which may delay the occurrence and progression of cognitive impairment in older adults with cognitive impairment.


Subject(s)
Cognition , Cognitive Dysfunction , Electroencephalography , Humans , Aged , Male , Female , Cognitive Dysfunction/physiopathology , Cognitive Dysfunction/diagnosis , Cognitive Dysfunction/psychology , Electroencephalography/methods , Cognition/physiology , Aged, 80 and over , Rest/physiology
18.
BMJ Open ; 14(4): e079434, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38569709

ABSTRACT

INTRODUCTION: Postoperative pain after thoracic surgery impairs patients' quality of life and increases the incidence of respiratory complications. Optimised analgesia strategies include minimally invasive incisions, regional analgesia and early chest tube removal. However, little is known about the optimal analgesic regimen for uniportal video-assisted thoracoscopic surgery (uVATS). METHODS AND ANALYSIS: We will conduct a single-centre, prospective, single-blind, randomised trial. The effects of postoperative analgesia will be tested using thoracic paravertebral block (PVB) in combination with patient-controlled intravenous analgesia (PVB+PCIA), erector spinae plane block (ESPB) in combination with patient-controlled intravenous analgesia (ESPB+PCIA) or PCIA alone; 102 patients undergoing uVATS will be enrolled in this study. Patients will be randomly assigned to the PVB group (30 mL of 0.33% ropivacaine with dexamethasone), ESPB group (40 mL of 0.25% ropivacaine with dexamethasone) or control groups. PCIA with sufentanil will be administered to all patients after surgery. The primary outcome will be total opioid consumption after surgery. Secondary outcomes include postoperative pain score; postoperative chronic pain at rest and during coughing; sensations of touch and pain in the chest wall, non-opioid analgesic consumption; length of stay; ambulation time, the total cost of hospitalisation and long-term postoperative analgesia. Adverse reactions to analgesics and adverse events related to the regional blocks will also be recorded. The statisticians will be blinded to the group allocation. Comparison of the continuous data among the three groups will be performed using a one-way analysis of variance to assess differences among the means. ETHICS AND DISSEMINATION: The results will be published in patient education courses, academic conferences and peer-reviewed journals. TRIAL REGISTRATION NUMBER: NCT06016777.


Subject(s)
Quality of Life , Thoracic Surgery, Video-Assisted , Humans , Ropivacaine , Thoracic Surgery, Video-Assisted/methods , Prospective Studies , Single-Blind Method , Analgesics , Pain, Postoperative/drug therapy , Pain, Postoperative/prevention & control , Pain, Postoperative/etiology , Analgesics, Opioid/therapeutic use , Analgesia, Patient-Controlled , Dexamethasone , Randomized Controlled Trials as Topic
19.
ACS Appl Mater Interfaces ; 16(15): 18608-18626, 2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38565551

ABSTRACT

Hypoxia, chronic inflammation, and elevated reactive oxygen species (ROS) production induced by hyperglycemia pose formidable challenges to the healing of diabetic chronic wounds, often resulting in impaired recovery. Currently, sustainable and eco-friendly therapeutic approaches targeting this multifaceted problem remain uncharted. Herein, we develop a unique three-functional covalent organic framework (COF)-modified microalgae gel designed for the preparation and treatment of chronic diabetic wounds. The gel comprises an oxygen-releasing basic fibroblast growth factor (bFGF) microalgae matrix, augmented by an ROS-responsive COF. Although two of these components have been reported to be used in wound healing, the combination of all three functions represents an innovative approach to synergize the treatment of chronic diabetic wounds. Therefore, we propose a new concept of "ligand interlocking" with three functional synergistic effects. Specifically, the COF has a similar effect to the "double Excalibur", which binds bFGF to promote angiogenesis and proliferation and inhibit the inflammatory response of chronic wounds and binds live microalgae to eliminate ROS and release dissolved oxygen to alleviate the hypoxia of wounds. Moreover, in vivo experiments and RNA sequencing analyses similarly demonstrated that the COF-modified microalgae gel reduced the inflammatory cascade cycle in the wound site and promoted vascular and tissue regeneration. We posit that the COF-modified microalgae gel represents a promising strategy for the active in vivo delivery of therapeutics to the wound body in intensive care unit settings.


Subject(s)
Diabetes Mellitus , Metal-Organic Frameworks , Microalgae , Humans , Fibroblast Growth Factor 2 , Reactive Oxygen Species , Gels , Hypoxia , Oxygen , Hydrogels
20.
Nat Microbiol ; 9(5): 1244-1255, 2024 May.
Article in English | MEDLINE | ID: mdl-38649414

ABSTRACT

Carbapenem-resistant Acinetobacter baumannii infections have limited treatment options. Synthesis, transport and placement of lipopolysaccharide or lipooligosaccharide (LOS) in the outer membrane of Gram-negative bacteria are important for bacterial virulence and survival. Here we describe the cerastecins, inhibitors of the A. baumannii transporter MsbA, an LOS flippase. These molecules are potent and bactericidal against A. baumannii, including clinical carbapenem-resistant Acinetobacter baumannii isolates. Using cryo-electron microscopy and biochemical analysis, we show that the cerastecins adopt a serpentine configuration in the central vault of the MsbA dimer, stalling the enzyme and uncoupling ATP hydrolysis from substrate flipping. A derivative with optimized potency and pharmacokinetic properties showed efficacy in murine models of bloodstream or pulmonary A. baumannii infection. While resistance development is inevitable, targeting a clinically unexploited mechanism avoids existing antibiotic resistance mechanisms. Although clinical validation of LOS transport remains undetermined, the cerastecins may open a path to narrow-spectrum treatment modalities for important nosocomial infections.


Subject(s)
Acinetobacter Infections , Acinetobacter baumannii , Anti-Bacterial Agents , Bacterial Proteins , Lipopolysaccharides , Acinetobacter baumannii/drug effects , Acinetobacter baumannii/metabolism , Lipopolysaccharides/metabolism , Animals , Acinetobacter Infections/microbiology , Acinetobacter Infections/drug therapy , Mice , Anti-Bacterial Agents/pharmacology , Bacterial Proteins/metabolism , Biological Transport , Microbial Sensitivity Tests , Humans , Cryoelectron Microscopy , Carbapenems/pharmacology , Carbapenems/metabolism , Disease Models, Animal , Female , ATP-Binding Cassette Transporters
SELECTION OF CITATIONS
SEARCH DETAIL