Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 50
Filter
1.
Nat Med ; 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38965435

ABSTRACT

Differential diagnosis of dementia remains a challenge in neurology due to symptom overlap across etiologies, yet it is crucial for formulating early, personalized management strategies. Here, we present an artificial intelligence (AI) model that harnesses a broad array of data, including demographics, individual and family medical history, medication use, neuropsychological assessments, functional evaluations and multimodal neuroimaging, to identify the etiologies contributing to dementia in individuals. The study, drawing on 51,269 participants across 9 independent, geographically diverse datasets, facilitated the identification of 10 distinct dementia etiologies. It aligns diagnoses with similar management strategies, ensuring robust predictions even with incomplete data. Our model achieved a microaveraged area under the receiver operating characteristic curve (AUROC) of 0.94 in classifying individuals with normal cognition, mild cognitive impairment and dementia. Also, the microaveraged AUROC was 0.96 in differentiating the dementia etiologies. Our model demonstrated proficiency in addressing mixed dementia cases, with a mean AUROC of 0.78 for two co-occurring pathologies. In a randomly selected subset of 100 cases, the AUROC of neurologist assessments augmented by our AI model exceeded neurologist-only evaluations by 26.25%. Furthermore, our model predictions aligned with biomarker evidence and its associations with different proteinopathies were substantiated through postmortem findings. Our framework has the potential to be integrated as a screening tool for dementia in clinical settings and drug trials. Further prospective studies are needed to confirm its ability to improve patient care.

2.
AJNR Am J Neuroradiol ; 45(6): 701-707, 2024 06 07.
Article in English | MEDLINE | ID: mdl-38697792

ABSTRACT

BACKGROUND AND PURPOSE: Contrast staining is a common finding after endovascular treatment of acute ischemic stroke. It typically occurs in infarcted tissue and is considered an indicator of irreversible brain damage. Contrast staining in noninfarcted tissue has not been systematically investigated. We sought to assess the incidence, risk factors, and clinical significance of contrast staining in noninfarcted tissue after endovascular treatment. MATERIALS AND METHODS: We conducted a retrospective review of consecutive patients who underwent endovascular treatment for anterior circulation large-vessel occlusion acute ischemic stroke. Contrast staining, defined as new hyperdensity on CT after endovascular treatment, was categorized as either contrast staining in infarcted tissue if the stained region demonstrated restricted diffusion on follow-up MR imaging or contrast staining in noninfarcted tissue if the stained region demonstrated no restricted diffusion. Baseline differences between patients with and without contrast staining in noninfarcted tissue were compared. Logistic regression was used to identify independent associations for contrast staining in noninfarcted tissue after endovascular treatment. RESULTS: Among 194 patients who underwent endovascular treatment for large-vessel occlusion acute ischemic stroke and met the inclusion criteria, contrast staining in infarcted tissue was noted in 52/194 (26.8%) patients; contrast staining in noninfarcted tissue, in 26 (13.4%) patients. Both contrast staining in infarcted tissue and contrast staining in noninfarcted tissue were noted in 5.6% (11/194). Patients with contrast staining in noninfarcted tissue were found to have a higher likelihood of having an ASPECTS of 8-10, to be associated with contrast staining in infarcted tissue, and to achieve successful reperfusion compared with those without contrast staining in noninfarcted tissue. In contrast staining in noninfarcted tissue regions, the average attenuation was 40 HU, significantly lower than the contrast staining in infarcted tissue regions (53 HU). None of the patients with contrast staining in noninfarcted tissue had clinical worsening during their hospital stay. The median discharge mRS was significantly lower in patients with contrast staining in noninfarcted tissue than in those without (3 versus 4; P = .018). No independent predictors of contrast staining in noninfarcted tissue were found. CONCLUSIONS: Contrast staining can be seen outside the infarcted tissue after endovascular treatment of acute ischemic stroke, likely attributable to the reversible disruption of the BBB in ischemic but not infarcted tissue. While generally benign, understanding its characteristics is important because it may mimic pathologic conditions such as infarcted tissue and cerebral edema.


Subject(s)
Contrast Media , Endovascular Procedures , Ischemic Stroke , Humans , Male , Female , Aged , Ischemic Stroke/diagnostic imaging , Ischemic Stroke/surgery , Ischemic Stroke/therapy , Retrospective Studies , Middle Aged , Aged, 80 and over , Tomography, X-Ray Computed , Treatment Outcome , Risk Factors , Magnetic Resonance Imaging/methods
3.
medRxiv ; 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38585870

ABSTRACT

Differential diagnosis of dementia remains a challenge in neurology due to symptom overlap across etiologies, yet it is crucial for formulating early, personalized management strategies. Here, we present an AI model that harnesses a broad array of data, including demographics, individual and family medical history, medication use, neuropsychological assessments, functional evaluations, and multimodal neuroimaging, to identify the etiologies contributing to dementia in individuals. The study, drawing on 51,269 participants across 9 independent, geographically diverse datasets, facilitated the identification of 10 distinct dementia etiologies. It aligns diagnoses with similar management strategies, ensuring robust predictions even with incomplete data. Our model achieved a micro-averaged area under the receiver operating characteristic curve (AUROC) of 0.94 in classifying individuals with normal cognition, mild cognitive impairment and dementia. Also, the micro-averaged AUROC was 0.96 in differentiating the dementia etiologies. Our model demonstrated proficiency in addressing mixed dementia cases, with a mean AUROC of 0.78 for two co-occurring pathologies. In a randomly selected subset of 100 cases, the AUROC of neurologist assessments augmented by our AI model exceeded neurologist-only evaluations by 26.25%. Furthermore, our model predictions aligned with biomarker evidence and its associations with different proteinopathies were substantiated through postmortem findings. Our framework has the potential to be integrated as a screening tool for dementia in various clinical settings and drug trials, with promising implications for person-level management.

4.
Tomography ; 10(2): 266-276, 2024 Feb 11.
Article in English | MEDLINE | ID: mdl-38393289

ABSTRACT

OBJECTIVE: Internal Jugular Vein Stenosis (IJVS) is hypothesized to play a role in the pathogenesis of diverse neurological diseases. We sought to evaluate differences in IJVS assessment between CT and MRI in a retrospective patient cohort. METHODS: We included consecutive patients who had both MRI of the brain and CT of the head and neck with contrast from 1 June 2021 to 30 June 2022 within the same admission. The degree of IJVS was categorized into five grades (0-IV). RESULTS: A total of 35 patients with a total of 70 internal jugular (IJ) veins were included in our analysis. There was fair intermodality agreement in stenosis grades (κ = 0.220, 95% C.I. = [0.029, 0.410]), though categorical stenosis grades were significantly discordant between imaging modalities, with higher grades more frequent in MRI (χ2 = 27.378, p = 0.002). On CT-based imaging, Grade III or IV stenoses were noted in 17/70 (24.2%) IJs, whereas on MRI-based imaging, Grade III or IV stenoses were found in 40/70 (57.1%) IJs. Among veins with Grade I-IV IJVS, MRI stenosis estimates were significantly higher than CT stenosis estimates (77.0%, 95% C.I. [35.9-55.2%] vs. 45.6%, 95% C.I. [35.9-55.2%], p < 0.001). CONCLUSION: MRI with contrast overestimates the degree of IJVS compared to CT with contrast. Consideration of this discrepancy should be considered in diagnosis and treatment planning in patients with potential IJVS-related symptoms.


Subject(s)
Jugular Veins , Vascular Diseases , Humans , Constriction, Pathologic/diagnostic imaging , Constriction, Pathologic/pathology , Jugular Veins/diagnostic imaging , Jugular Veins/pathology , Retrospective Studies , Magnetic Resonance Imaging , Vascular Diseases/pathology , Tomography, X-Ray Computed
5.
J Neurointerv Surg ; 2023 Dec 30.
Article in English | MEDLINE | ID: mdl-38160055

ABSTRACT

BACKGROUND: Recent studies have shown that follow-up head CT is a strong predictor of functional outcomes in patients with middle cerebral artery stroke and mechanical thrombectomy. We sought to determine whether total and/or regional follow-up Alberta Stroke Program Early CT Score (ASPECTSfu) are associated with important clinical outcomes during hospitalization and improve the performance of clinical prediction models of potentially lethal malignant edema (PLME). METHODS: We conducted a retrospective study of patients at three medical centers in a major North American metropolitan area with baseline and follow-up head CTs after large middle cerebral artery stroke between 2006 and 2022. We used multivariable logistic regression to test the association of total and regional ASPECTSfu with PLME (cerebral edema related death or surgery), adjusting for total baseline ASPECTS, age, sex, admission glucose, tissue plasminogen activator, and mechanical thrombectomy. We compared existing clinical risk models with and without total or regional ASPECTSfu using area under the curve. RESULTS: In our 560 patient cohort, lower total ASPECTSfu was significantly associated with higher odds of PLME when adjusting for confounders (OR 1.69, 95% CI 1.49 to 2.0), and improved model discrimination compared with existing models and models using baseline ASPECTS. Deep territory involvement (OR 2.46, 95% CI 1.53 to 4.01) and anterior territory involvement (OR 3.23, 95% CI 1.88 to 5.71) were significantly associated with PLME. CONCLUSIONS: Lower ASPECTSfu and certain locations on regional ASPECTSfu, including deep and anterior areas, were significantly associated with PLME. Including ASPECTSfu information improved discrimination of established edema prediction models and could be used immediately to help facilitate clinical management decisions and prognostication.

6.
World Neurosurg ; 179: e281-e287, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37625636

ABSTRACT

BACKGROUND: Challenging arterial anatomy may prevent timely endovascular treatment (EVT) of acute ischemic stroke (AIS) through a transfemoral approach prompting the use of alternative access routes. We determined the crossover rate from femoral to radial access during EVT of AIS due to large vessel occlusion and identified its radiological predictors and clinical outcomes. MATERIALS AND METHODS: Retrospective review of all AIS patients who underwent EVT at a single institution from January 2016 to March 2021 was performed. A primary and a secondary radial group depending on whether the radial approach was used primarily or secondary to failure of transfemoral approach were compared. RESULTS: A total of 358 consecutive AIS patients with large vessel occlusion underwent EVT. Radial approach was used primarily in 6 patients (primary radial [PR]) and secondarily in 16 patients (secondary radial [SR]). The rate of femoral to radial crossover was 4.7%. Type III arch and bovine arch configurations were the most common characteristic in the crossover group. Radial access was successful to secure intracranial access in all cases of PR and in 87% of crossover cases. There was no significant difference between the rates of successful reperfusion (53.3% SR, 83% PR, P = 0.20), National Institutes of Health Stroke Scale score on discharge (19 SR, 18 PR group, P = 0.90), or good outcome defined as modified Rankin Scale score 0-2 (13.3% SR, 33.3% PR, P = 0.29). CONCLUSIONS: A radial approach can be considered during EVT of AIS due to large vessel occlusion either primarily or secondarily with a lower threshold to switch from the femoral approach in cases of challenging anatomy.


Subject(s)
Brain Ischemia , Endovascular Procedures , Ischemic Stroke , Stroke , Humans , Stroke/diagnostic imaging , Stroke/surgery , Stroke/complications , Brain Ischemia/diagnostic imaging , Brain Ischemia/surgery , Brain Ischemia/complications , Ischemic Stroke/complications , Treatment Outcome , Thrombectomy , Retrospective Studies
7.
iScience ; 26(9): 107522, 2023 Sep 15.
Article in English | MEDLINE | ID: mdl-37646016

ABSTRACT

Quantifying the risk of progression to Alzheimer's disease (AD) could help identify persons who could benefit from early interventions. We used data from the Alzheimer's Disease Neuroimaging Initiative (ADNI, n = 544, discovery cohort) and the National Alzheimer's Coordinating Center (NACC, n = 508, validation cohort), subdividing individuals with mild cognitive impairment (MCI) into risk groups based on cerebrospinal fluid amyloid-ß levels and identifying differential gray matter patterns. We then created models that fused neural networks with survival analysis, trained using non-parcellated T1-weighted brain MRIs from ADNI data, to predict the trajectories of MCI to AD conversion within the NACC cohort (integrated Brier score: 0.192 [discovery], and 0.108 [validation]). Using modern interpretability techniques, we verified that regions important for model prediction are classically associated with AD. We confirmed AD diagnosis labels using postmortem data. We conclude that our framework provides a strategy for risk-based stratification of individuals with MCI and for identifying regions key for disease prognosis.

8.
J Neuroimaging ; 33(5): 752-763, 2023.
Article in English | MEDLINE | ID: mdl-37381160

ABSTRACT

BACKGROUND AND PURPOSE: To determine the incidence of acute neuroimaging (NI) findings and comorbidities in the coronavirus disease of 2019 (COVID-19)-infected subjects in seven U.S. and four European hospitals. METHODS: This is a retrospective study of COVID-19-positive subjects with the following inclusion criteria: age >18, lab-confirmed COVID-19 infection, and acute NI findings (NI+) attributed to COVID-19 on CT or MRI brain. NI+ and comorbidities in total hospitalized COVID-19-positive (TN) subjects were assessed. RESULTS: A total of 37,950 COVID-19-positive subjects were reviewed and 4342 underwent NI. NI+ incidence in subjects with NI was 10.1% (442/4342) including 7.9% (294/3701) in the United States and 22.8% (148/647) in Europe. NI+ incidence in TN was 1.16% (442/37,950). In NI (4342), incidence of ischemic stroke was 6.4% followed by intracranial hemorrhage (ICH) (3.8%), encephalitis (0.5%), sinus venous thrombosis (0.2%), and acute disseminated encephalomyelitis (ADEM) (0.2%). White matter involvement was seen in 57% of NI+. Hypertension was the most common comorbidity (54%) before cardiac disease (28.8%) and diabetes mellitus (27.7%). Cardiac disease (p < .025), diabetes (p < .014), and chronic kidney disease (p < .012) were more common in the United States. CONCLUSION: This multicenter, multinational study investigated the incidence and spectrum of NI+ in 37,950 hospitalized adult COVID-19 subjects including regional differences in incidences of NI+, associated comorbidities, and other demographics. NI+ incidence in TN was 1.16% including 0.95% in the United States and 2.09% in Europe. ICH, encephalitis, and ADEM were common in Europe, while ischemic strokes were more common in the United States. In this cohort, incidence and distribution of NI+ helped characterize the neurological complications of COVID-19.


Subject(s)
COVID-19 , Encephalitis , Encephalomyelitis, Acute Disseminated , Heart Diseases , Ischemic Stroke , Adult , Humans , United States/epidemiology , COVID-19/diagnostic imaging , COVID-19/epidemiology , Retrospective Studies , Neuroimaging/methods , Intracranial Hemorrhages , Europe/epidemiology
9.
Acad Radiol ; 30(6): 1173-1180, 2023 06.
Article in English | MEDLINE | ID: mdl-37197840

ABSTRACT

RATIONALE AND OBJECTIVES: In order to help program directors satisfy the Accreditation Council for Graduate Medical Education common program requirement for health care disparities (HCD) education, a comprehensive web-based curriculum on HCDs in Radiology was developed. The curriculum was designed to educate trainees about existing HCDs, stimulate discussion, and spur research about HCDs in radiology. The curriculum was piloted to assess its educational value and feasibility. MATERIAL AND METHODS: A comprehensive curriculum comprised of four modules (1) Introduction to HCDs in Radiology, (2) Types of HCDs in Radiology, (3) Actions to Address HCDs in Radiology, and (4) Cultural Competency was created and housed on the Associate of Program Directors in Radiology website. Various educational media including recorded lectures or PowerPoint presentations, small group discussions, and journal clubs were employed. A pilot program was initiated to evaluate the benefits of this curriculum for resident education and consisted of a pre- and post-curriculum test for trainees, an experience survey for trainees, and a pre- and post-administration survey for facilitators. RESULTS: Forty-seven radiology residency programs participated in the pilot of the HCD curriculum. Of those facilitating the curriculum, 83% indicated lack of standardized curriculum as a perceived barrier to implementing a HCD curriculum at their program on the pre-survey. Trainee knowledge scores increased from 65% (pre) to 67% (post) (p = 0.05). Following curriculum participation, residents indicated an increase in adequate understanding of HCDs in Radiology (81% post vs. 45% pre). Most program directors (75%) found the curriculum easy to implement. CONCLUSION: This pilot study demonstrated that the APDR Health Care Disparities curriculum increased trainee awareness of HCDs. The curriculum also provided a forum for important discussions about HCDs.


Subject(s)
Healthcare Disparities , Internship and Residency , Humans , Pilot Projects , Education, Medical, Graduate , Curriculum
10.
Front Neurol ; 13: 1046548, 2022.
Article in English | MEDLINE | ID: mdl-36561299

ABSTRACT

Background: Asymmetric pupil reactivity or size can be early clinical indicators of midbrain compression due to supratentorial ischemic stroke or primary intraparenchymal hemorrhage (IPH). Radiographic midline shift is associated with worse functional outcomes and life-saving interventions. Better understanding of quantitative pupil characteristics would be a non-invasive, safe, and cost-effective way to improve identification of life-threatening mass effect and resource utilization of emergent radiographic imaging. We aimed to better characterize the association between midline shift at various anatomic levels and quantitative pupil characteristics. Methods: We conducted a multicenter retrospective study of brain CT images within 75 min of a quantitative pupil observation from patients admitted to Neuro-ICUs between 2016 and 2020 with large (>1/3 of the middle cerebral artery territory) acute supratentorial ischemic stroke or primary IPH > 30 mm3. For each image, we measured midline shift at the septum pellucidum (MLS-SP), pineal gland shift (PGS), the ratio of the ipsilateral to contralateral midbrain width (IMW/CMW), and other exploratory markers of radiographic shift/compression. Pupil reactivity was measured using an automated infrared pupillometer (NeurOptics®, Inc.), specifically the proprietary algorithm for Neurological Pupil Index® (NPi). We used rank-normalization and linear mixed-effects models, stratified by diagnosis and hemorrhagic conversion, to test associations of radiographic markers of shift and asymmetric pupil reactivity (Diff NPi), adjusting for age, lesion volume, Glasgow Coma Scale, and osmotic medications. Results: Of 53 patients with 74 CT images, 26 (49.1%) were female, and median age was 67 years. MLS-SP and PGS were greater in patients with IPH, compared to patients with ischemic stroke (6.2 v. 4.0 mm, 5.6 v. 3.4 mm, respectively). We found no significant associations between pupil reactivity and the radiographic markers of shift when adjusting for confounders. However, we found potentially relevant relationships between MLS-SP and Diff NPi in our IPH cohort (ß = 0.11, SE 0.04, P = 0.01), and PGS and Diff NPi in the ischemic stroke cohort (ß = 0.16, SE 0.09, P = 0.07). Conclusion: We found the relationship between midline shift and asymmetric pupil reactivity may differ between IPH and ischemic stroke. Our study may serve as necessary preliminary data to guide further prospective investigation into how clinical manifestations of radiographic midline shift differ by diagnosis and proximity to the midbrain.

11.
Nat Commun ; 13(1): 3404, 2022 06 20.
Article in English | MEDLINE | ID: mdl-35725739

ABSTRACT

Worldwide, there are nearly 10 million new cases of dementia annually, of which Alzheimer's disease (AD) is the most common. New measures are needed to improve the diagnosis of individuals with cognitive impairment due to various etiologies. Here, we report a deep learning framework that accomplishes multiple diagnostic steps in successive fashion to identify persons with normal cognition (NC), mild cognitive impairment (MCI), AD, and non-AD dementias (nADD). We demonstrate a range of models capable of accepting flexible combinations of routinely collected clinical information, including demographics, medical history, neuropsychological testing, neuroimaging, and functional assessments. We then show that these frameworks compare favorably with the diagnostic accuracy of practicing neurologists and neuroradiologists. Lastly, we apply interpretability methods in computer vision to show that disease-specific patterns detected by our models track distinct patterns of degenerative changes throughout the brain and correspond closely with the presence of neuropathological lesions on autopsy. Our work demonstrates methodologies for validating computational predictions with established standards of medical diagnosis.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Deep Learning , Alzheimer Disease/diagnostic imaging , Alzheimer Disease/psychology , Cognitive Dysfunction/diagnosis , Cognitive Dysfunction/pathology , Disease Progression , Humans , Neuroimaging/methods
12.
Neurocrit Care ; 37(Suppl 2): 291-302, 2022 08.
Article in English | MEDLINE | ID: mdl-35534660

ABSTRACT

BACKGROUND: Abstraction of critical data from unstructured radiologic reports using natural language processing (NLP) is a powerful tool to automate the detection of important clinical features and enhance research efforts. We present a set of NLP approaches to identify critical findings in patients with acute ischemic stroke from radiology reports of computed tomography (CT) and magnetic resonance imaging (MRI). METHODS: We trained machine learning classifiers to identify categorical outcomes of edema, midline shift (MLS), hemorrhagic transformation, and parenchymal hematoma, as well as rule-based systems (RBS) to identify intraventricular hemorrhage (IVH) and continuous MLS measurements within CT/MRI reports. Using a derivation cohort of 2289 reports from 550 individuals with acute middle cerebral artery territory ischemic strokes, we externally validated our models on reports from a separate institution as well as from patients with ischemic strokes in any vascular territory. RESULTS: In all data sets, a deep neural network with pretrained biomedical word embeddings (BioClinicalBERT) achieved the highest discrimination performance for binary prediction of edema (area under precision recall curve [AUPRC] > 0.94), MLS (AUPRC > 0.98), hemorrhagic conversion (AUPRC > 0.89), and parenchymal hematoma (AUPRC > 0.76). BioClinicalBERT outperformed lasso regression (p < 0.001) for all outcomes except parenchymal hematoma (p = 0.755). Tailored RBS for IVH and continuous MLS outperformed BioClinicalBERT (p < 0.001) and linear regression, respectively (p < 0.001). CONCLUSIONS: Our study demonstrates robust performance and external validity of a core NLP tool kit for identifying both categorical and continuous outcomes of ischemic stroke from unstructured radiographic text data. Medically tailored NLP methods have multiple important big data applications, including scalable electronic phenotyping, augmentation of clinical risk prediction models, and facilitation of automatic alert systems in the hospital setting.


Subject(s)
Ischemic Stroke , Radiology , Hematoma , Humans , Ischemic Stroke/diagnostic imaging , Machine Learning , Natural Language Processing
13.
J Intensive Care ; 10(1): 16, 2022 Mar 16.
Article in English | MEDLINE | ID: mdl-35292111

ABSTRACT

Brain death, also commonly referred to as death by neurologic criteria, has been considered a legal definition of death for decades. Its determination involves many considerations and subtleties. In this review, we discuss the philosophy and history of brain death, its clinical determination, and special considerations. We discuss performance of the main clinical components of the brain death exam: assessment of coma, cranial nerves, motor testing, and apnea testing. We also discuss common ancillary tests, including advantages and pitfalls. Special discussion is given to extracorporeal membrane oxygenation, target temperature management, and determination of brain death in pediatric populations. Lastly, we discuss existing controversies and future directions in the field.

14.
J Am Coll Radiol ; 19(1 Pt B): 101-111, 2022 01.
Article in English | MEDLINE | ID: mdl-35033297

ABSTRACT

INTRODUCTION: Health care disparities exist in all medical specialties, including radiology. Raising awareness of established health care disparities is a critical component of radiology's efforts to mitigate disparities. Our primary objective is to perform a comprehensive review of the last 10 years of literature pertaining to disparities in radiology care. Our secondary objective is to raise awareness of disparities in radiology. METHODS: We reviewed English-language medicine and health services literature from the past 10 years (2010-2020) for research that described disparities in any aspect of radiologic imaging using radiology search terms and key words for disparities in OVID. Relevant studies were identified with adherence to the guidelines set forth by the Preferred Reporting Items for Systematic Reviews and Meta-Analyses statement. RESULTS: The search yielded a total 1,890 articles. We reviewed the citations and abstracts with the initial search yielding 1,890 articles (without duplicates). Of these, 1,776 were excluded based on the criteria set forth in the methods. The remaining unique 114 articles were included for qualitative synthesis. DISCUSSION: We hope this article increases awareness and inspires action to address disparities and encourages research that further investigates previously identified disparities and explores not-yet-identified disparities.


Subject(s)
Healthcare Disparities , Radiology , Publications , Radiography
15.
Acad Radiol ; 29 Suppl 5: S18-S26, 2022 05.
Article in English | MEDLINE | ID: mdl-33293257

ABSTRACT

The Accreditation Council for Graduate Medical Education oversees graduate medical education in the United States. Designed to provide broad based training in all aspects of imaging, the diagnostic radiology residency program must provide educational experiences that not only provide technical, professional, and patient centered training, but also meet accreditation standards. With the breadth of material to cover during training, carefully orchestrated educational experiences must be planned. This manuscript offers residency program leaders resources to meet the challenges of the new Accreditation Council for Graduate Medical Education Diagnostic Radiology Milestones 2.0 and highlights potential opportunities for future educational endeavors.


Subject(s)
Internship and Residency , Radiology , Accreditation , Clinical Competence , Education, Medical, Graduate/methods , Humans , Radiography , Radiology/education , United States
16.
Neurology ; 98(1): e27-e39, 2022 01 04.
Article in English | MEDLINE | ID: mdl-34819338

ABSTRACT

BACKGROUND AND OBJECTIVES: Late neuropathologies of repetitive head impacts from contact sports can include chronic traumatic encephalopathy (CTE) and white matter degeneration. White matter hyperintensities (WMH) on fluid-attenuated inversion recovery (FLAIR) MRI scans are often viewed as microvascular disease from vascular risk, but might have unique underlying pathologies and risk factors in the setting of repetitive head impacts. We investigated the neuropathologic correlates of antemortem WMH in brain donors exposed to repetitive head impacts. The association between WMH and repetitive head impact exposure and informant-reported cognitive and daily function were tested. METHODS: This imaging-pathologic correlation study included symptomatic male decedents exposed to repetitive head impacts. Donors had antemortem FLAIR scans from medical records and were without evidence of CNS neoplasm, large vessel infarcts, hemorrhage, or encephalomalacia. WMH were quantified using log-transformed values for total lesion volume (TLV), calculated using the lesion prediction algorithm from the Lesion Segmentation Toolbox. Neuropathologic assessments included semiquantitative ratings of white matter rarefaction, cerebrovascular disease, hyperphosphorylated tau (p-tau) severity (CTE stage, dorsolateral frontal cortex), and ß-amyloid (Aß). Among football players, years of play was a proxy for repetitive head impact exposure. Retrospective informant-reported cognitive and daily function were assessed using the Cognitive Difficulties Scale (CDS) and Functional Activities Questionnaire (FAQ). Regression models controlled for demographics, diabetes, hypertension, and MRI resolution. Statistical significance was defined as p ≤ 0.05. RESULTS: The sample included 75 donors: 67 football players and 8 nonfootball contact sport athletes or military veterans. Dementia was the most common MRI indication (64%). Fifty-three (70.7%) had CTE at autopsy. Log TLV was associated with white matter rarefaction (odds ratio [OR] 2.32, 95% confidence interval [CI] 1.03, 5.24; p = 0.04), arteriolosclerosis (OR 2.38, 95% CI 1.02, 5.52; p = 0.04), CTE stage (OR 2.58, 95% CI 1.17, 5.71; p = 0.02), and dorsolateral frontal p-tau severity (OR 3.03, 95% CI 1.32, 6.97; p = 0.01). There was no association with Aß. More years of football play was associated with log TLV (unstandardized ß 0.04, 95% CI 0.01, 0.06; p = 0.01). Greater log TLV correlated with higher FAQ (unstandardized ß 4.94, 95% CI 0.42, 8.57; p = 0.03) and CDS scores (unstandardized ß 15.35, 95% CI -0.27, 30.97; p = 0.05). DISCUSSION: WMH might capture long-term white matter pathologies from repetitive head impacts, including those from white matter rarefaction and p-tau, in addition to microvascular disease. Prospective imaging-pathologic correlation studies are needed. CLASSIFICATION OF EVIDENCE: This study provides Class IV evidence of associations between FLAIR white matter hyperintensities and neuropathologic changes (white matter rarefaction, arteriolosclerosis, p-tau accumulation), years of American football play, and reported cognitive symptoms in symptomatic brain donors exposed to repetitive head impacts.


Subject(s)
White Matter , Brain/diagnostic imaging , Brain/pathology , Humans , Magnetic Resonance Imaging , Male , Prospective Studies , Retrospective Studies , White Matter/diagnostic imaging , White Matter/pathology
17.
Alzheimers Res Ther ; 13(1): 193, 2021 12 07.
Article in English | MEDLINE | ID: mdl-34876229

ABSTRACT

BACKGROUND: Chronic traumatic encephalopathy (CTE), a neurodegenerative tauopathy, cannot currently be diagnosed during life. Atrophy patterns on magnetic resonance imaging could be an effective in vivo biomarker of CTE, but have not been characterized. Mechanisms of neurodegeneration in CTE are unknown. Here, we characterized macrostructural magnetic resonance imaging features of brain donors with autopsy-confirmed CTE. The association between hyperphosphorylated tau (p-tau) and atrophy on magnetic resonance imaging was examined. METHODS: Magnetic resonance imaging scans were obtained by medical record requests for 55 deceased symptomatic men with autopsy-confirmed CTE and 31 men (n = 11 deceased) with normal cognition at the time of the scan, all >60 years Three neuroradiologists visually rated regional atrophy and microvascular disease (0 [none]-4 [severe]), microbleeds, and cavum septum pellucidum presence. Neuropathologists rated tau severity and atrophy at autopsy using semi-quantitative scales. RESULTS: Compared to unimpaired males, donors with CTE (45/55=stage III/IV) had greater atrophy of the orbital-frontal (mean diff.=1.29), dorsolateral frontal (mean diff.=1.31), superior frontal (mean diff.=1.05), anterior temporal (mean diff.=1.57), and medial temporal lobes (mean diff.=1.60), and larger lateral (mean diff.=1.72) and third (mean diff.=0.80) ventricles, controlling for age at scan (ps<0.05). There were no effects for posterior atrophy or microvascular disease. Donors with CTE had increased odds of a cavum septum pellucidum (OR = 6.7, p < 0.05). Among donors with CTE, greater tau severity across 14 regions corresponded to greater atrophy on magnetic resonance imaging (beta = 0.68, p < 0.01). CONCLUSIONS: These findings support frontal-temporal atrophy as a magnetic resonance imaging finding of CTE and show p-tau accumulation is associated with atrophy in CTE.


Subject(s)
Chronic Traumatic Encephalopathy , Atrophy/pathology , Autopsy , Brain/metabolism , Chronic Traumatic Encephalopathy/pathology , Humans , Magnetic Resonance Imaging/methods , Male , tau Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL