Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters








Database
Language
Publication year range
1.
Rev Sci Instrum ; 91(6): 063001, 2020 Jun 01.
Article in English | MEDLINE | ID: mdl-32611013

ABSTRACT

We present a compact setup for spin-, time-, and angle-resolved photoemission spectroscopy. A 10 kHz titanium sapphire laser system delivers pulses of 20 fs duration, which drive a high harmonic generation-based source for ultraviolet photons at 21 eV for photoemission. The same laser also excites the sample for pump-probe experiments. Emitted electrons pass through a hemispherical energy analyzer and a spin-filtering element. The latter is based on spin-polarized low-energy electron diffraction on an Au-passivated iridium crystal. The performance of the measurement system is discussed in terms of the resolution and efficiency of the spin filter, which are higher than those for Mott-based techniques.

2.
Phys Rev Lett ; 121(8): 087206, 2018 Aug 24.
Article in English | MEDLINE | ID: mdl-30192573

ABSTRACT

Prior to the development of pulsed lasers, one assigned a single local temperature to the lattice, the electron gas, and the spins. With the availability of ultrafast laser sources, one can now drive the temperature of these reservoirs out of equilibrium. Thus, the solid shows new internal degrees of freedom characterized by individual temperatures of the electron gas T_{e}, the lattice T_{l} and the spins T_{s}. We demonstrate an analogous behavior in the spin polarization of a ferromagnet in an ultrafast demagnetization experiment: At the Fermi energy, the polarization is reduced faster than at deeper in the valence band. Therefore, on the femtosecond time scale, the magnetization as a macroscopic quantity does not provide the full picture of the spin dynamics: The spin polarization separates into different parts similar to how the single temperature paradigm changed with the development of ultrafast lasers.

3.
J Phys Condens Matter ; 29(21): 214002, 2017 Jun 01.
Article in English | MEDLINE | ID: mdl-28441145

ABSTRACT

The ultrafast demagnetization process allows for the generation of femtosecond spin current pulses. Here, we present a thermodynamic model of the spin current generation process, based on the chemical potential gradients as the driving force for the spin current. We demonstrate that the laser-induced spin current can be estimated by an easy to understand diffusion model.

4.
Struct Dyn ; 2(2): 024501, 2015 Mar.
Article in English | MEDLINE | ID: mdl-26798794

ABSTRACT

The laser-induced demagnetization of a ferromagnet is caused by the temperature of the electron gas as well as the lattice temperature. For long excitation pulses, the two reservoirs are in thermal equilibrium. In contrast to a picosecond laser pulse, a femtosecond pulse causes a non-equilibrium between the electron gas and the lattice. By pump pulse length dependent optical measurements, we find that the magnetodynamics in Ni caused by a picosecond laser pulse can be reconstructed from the response to a femtosecond pulse. The mechanism responsible for demagnetization on the picosecond time scale is therefore contained in the femtosecond demagnetization experiment.

5.
Rev Sci Instrum ; 83(6): 063906, 2012 Jun.
Article in English | MEDLINE | ID: mdl-22755642

ABSTRACT

A compact coil setup, in conjunction with a high power current pulser, is presented; developed especially for time- and spin-resolved photoemission spectroscopy measuring the sample in magnetic remanence at room temperature. A novel approach is presented where the sample is switched in the stray field of a coil pair. This enables the electrical biasing of the sample without altering the electron trajectories due to field gradients introduced by the coils. The pulser driving the coils reaches a peak power of 1 MW at 1 kA with a switching frequency up to 10 kHz suitable for experiments, for example, with state of the art repetition rates of femtosecond laser systems.

SELECTION OF CITATIONS
SEARCH DETAIL