Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters








Publication year range
1.
Sci Rep ; 14(1): 18799, 2024 Aug 13.
Article in English | MEDLINE | ID: mdl-39138313

ABSTRACT

The pressure-induced structural changes in the perovskite-type (ABO 3 ) ferroelectric solid solution (1-x)Na 0.5 Bi 0.5 TiO 3 -xBaTiO 3 (NBT-xBT) at the morphotropic phase boundary (MPB) ( x MPB = 0.048 ) have been analyzed up to 12.3 GPa by single-crystal x-ray diffraction with synchrotron radiation. A pressure-induced phase transition takes place between 4.4 and 5.0 GPa, where the pseudocubic low-pressure phase transforms into an orthorhombic high-pressure phase with space group Pnma. The high-pressure phase is comprised of mixed BO 6 tilts and anti-polar A-cation displacements, without exhibiting coherent off-centered shifts of the B-site Ti 4 + cations that can be detected by synchrotron x-ray diffraction. Our results reveal that at ambient pressure and room temperature the NBT- x MPB BT structure possesses anti-phase BO 6 tilts with a relatively large correlation length and the same type of polar distortions as those present in pure NBT, but with strongly violated correlation length due to Ba 2 + -induced local elastic-stress fields. For x MPB the effect of Ba on the mesoscopic-scale structure is compensated by a mild external pressure of only 0.7 GPa, resulting in structural features resembling those of pure NBT at ambient conditions.

2.
Sci Rep ; 14(1): 7106, 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38532061

ABSTRACT

In situ high-pressure/high-temperature Raman-scattering analyses on PbTiO 3 , 0.92PbTiO 3 - 0.08Bi(Zn 0.5 Ti 0.5 )O 3 and 0.83PbTiO 3 - 0.17Bi(Mg 0.5 Ti 0.5 )O 3 single crystals reveal an intensity transfer between the fine-structure components of the A 1 (TO) soft mode. The enhancement of the lowest-energy subpeak, which stems from intrinsic local non-tetragonal polar distortions, along with the suppression of the tetragonal A 1 (1TO) fundamental mode with increasing pressure and temperature indicates the key role of the local polarization fluctuations in transformation processes and emphasizes the significance of the order-disorder phenomena in both the pressure- and temperature-induced phase transitions of pure PbTiO 3 and its solid solutions with complex perovskites. Moreover, the temperature and pressure evolution of the fraction of the local non-tetragonal polar distortions is highly sensitive to the type of B-site substituent.

3.
Mater Sci Eng C Mater Biol Appl ; 91: 659-668, 2018 Oct 01.
Article in English | MEDLINE | ID: mdl-30033300

ABSTRACT

High-resolution analytical methods, including synchrotron infrared microspectroscopy combined with wavelength-dispersive X-ray emission spectroscopy were applied to study the structure and chemical composition of the oxidized layer of pure and Ag-alloyed Mg exposed to cell culture media without and with osteoblasts. Comparative analysis has been done on pure Mg immersed in two different cell culture media: Dulbecco's Modified Eagle's Medium (DMEM) and Roswell Park Memorial Institute medium (RPMI), whereas Mg-xAg binary alloys (x = 2, 4, 6, 8 wt%) were studied after immersion in DMEM. It is shown that the physicochemical formation of degradation products as well as the activity of the biological component is influenced by the addition of silver. It could be demonstrated that the presence of Ag in the Mg alloy enhances the chemical reaction between Mg and C to form amorphous and/or crystalline MgCO3 on account of CaCO3. As a consequence, the further available P and Ca react easily to form Mg-poor amorphous calcium phosphate phases. Osteoblasts actively adjusted these phases towards hydroxyapatite-like phases.


Subject(s)
Alloys/pharmacology , Biocompatible Materials/pharmacology , Magnesium/pharmacology , Microspectrophotometry , Osteoblasts/cytology , Silver/pharmacology , Synchrotrons , Animals , Humans , Hydrogen-Ion Concentration , Osteoblasts/drug effects , Oxidation-Reduction , Oxides/chemistry , Spectrophotometry, Infrared , Surface Properties
4.
J Phys Condens Matter ; 29(21): 213001, 2017 Jun 01.
Article in English | MEDLINE | ID: mdl-28379847

ABSTRACT

Lead phosphate-arsenate Pb3(P1-x As x O4)2 undergoes an improper ferroelastic phase transition from a rhombohedral paraphase [Formula: see text] to a monoclinic ferrophase [Formula: see text] leading to distinct twin boundary patterns. On cooling compounds with x larger than 0.8 undergo further transitions to monoclinic low-temperature phases, whereas the composition with x = 0.8 shows order-parameter coupling phenomena. The transformation [Formula: see text]-[Formula: see text] was described on the basis of a three-state Potts model and the existence of precursors of monoclinic clusters in the rhombohedral paraphase. The system is one of the best studied improper ferroelastics. Due to its two-mode phonon behaviour the solid solution exhibits multistep temperature- as well as pressure-driven structural transformations with different length and time scales. Relevant investigations and findings of this palmierite-type material have been made by Prof E K H Salje. Some of the most prominent results from x-ray diffraction, optical microscopy and Raman scattering are reviewed, and the potential implications for domain-wall structures and engineering are discussed.

5.
Sci Rep ; 7(1): 471, 2017 03 28.
Article in English | MEDLINE | ID: mdl-28352116

ABSTRACT

Revelation of unequivocal structural information at the atomic level for complex systems is uniquely important for deeper and generic understanding of the structure property connections and a key challenge in materials science. Here we report an experimental study of the local structure by applying total elastic scattering and Raman scattering analyses to an important non-relaxor ferroelectric solid solution exhibiting the so-called composition-induced morphotropic phase boundary (MPB), where concomitant enhancement of physical properties have been detected. The powerful combination of static and dynamic structural probes enabled us to derive direct correspondence between the atomic-level structural correlations and reported properties. The atomic pair distribution functions obtained from the neutron total scattering experiments were analysed through big-box atom-modelling implementing reverse Monte Carlo method, from which distributions of magnitudes and directions of off-centred cationic displacements were extracted. We found that an enhanced randomness of the displacement-directions for all ferroelectrically active cations combined with a strong dynamical coupling between the A- and B-site cations of the perovskite structure, can explain the abrupt amplification of piezoelectric response of the system near MPB. Altogether this provides a more fundamental basis in inferring structure-property connections in similar systems including important implications in designing novel and bespoke materials.

6.
Mater Sci Eng C Mater Biol Appl ; 58: 817-25, 2016 Jan 01.
Article in English | MEDLINE | ID: mdl-26478376

ABSTRACT

Magnesium and its alloys have considerable potential for orthopedic applications. During the degradation process the interface between material and tissue is continuously changing. Moreover, too fast or uncontrolled degradation is detrimental for the outcome in vivo. Therefore in vitro setups utilizing physiological conditions are promising for the material/degradation analysis prior to animal experiments. The aim of this study is to elucidate the influence of inorganic salts contributing to the blood buffering capacity on degradation. Extruded pure magnesium samples were immersed under cell culture conditions for 3 and 10 days. Hank's balanced salt solution without calcium and magnesium (HBSS) plus 10% of fetal bovine serum (FBS) was used as the basic immersion medium. Additionally, different inorganic salts were added with respect to concentration in Dulbecco's modified Eagle's medium (DMEM, in vitro model) and human plasma (in vivo model) to form 12 different immersion media. Influences on the surrounding environment were observed by measuring pH and osmolality. The degradation interface was analyzed by electron-induced X-ray emission (EIXE) spectroscopy, including chemical-element mappings and electron microprobe analysis, as well as Fourier transform infrared reflection micro-spectroscopy (FTIR).


Subject(s)
Magnesium/chemistry , Salts/chemistry , Buffers , Humans , Hydrogen-Ion Concentration , Mass Spectrometry , Osmolar Concentration , Spectroscopy, Fourier Transform Infrared
7.
Acta Biomater ; 25: 384-94, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26210283

ABSTRACT

RATIONALE: Blood compatibility analysis in the field of biomaterials is a highly controversial topic. Especially for degradable materials like magnesium and its alloys no established test methods are available. OBJECTIVE: The purpose of this study was to apply advanced test methodology for the analysis of degrading materials to get a mechanistic insight into the corrosion process in contact with human blood and plasma. METHODS AND RESULTS: Pure magnesium and two magnesium alloys were analysed in a modified Chandler-Loop setup. Standard clinical parameters were determined, and a thorough analysis of the resulting implant surface chemistry was performed. The contact of the materials to blood evoked an accelerated inflammatory and cell-induced osteoconductive reaction. Corrosion products formed indicate a more realistic, in vivo like situation. CONCLUSIONS: The active regulation of corrosion mechanisms of magnesium alloys by different cell types should be more in the focus of research to bridge the gap between in vitro and in vivo observations and to understand the mechanism of action. This in turn could lead to a better acceptance of these materials for implant applications. STATEMENT OF SIGNIFICANCE: The presented study deals with the first mechanistic insights during whole human blood contact and its influence on a degrading magnesium-based biomaterial. The combination of clinical parameters and corrosion layer analysis has been performed for the first time. It could be of interest due to the intended use of magnesium-based stents and for orthopaedic applications for clinical applications. An interest for the readers of Acta Biomaterialia may be given, as one of the first clinically approved magnesium-based devices is a wound-closure device, which is in direct contact with blood. Moreover, for orthopaedic applications also blood contact is of high interest. Although this is not the focus of the manuscript, it could help to rise awareness for potential future applications.


Subject(s)
Alloys/pharmacology , Magnesium/pharmacology , Materials Testing , Adult , Antithrombin III/metabolism , Blood Platelets/drug effects , Blood Platelets/metabolism , Calcium/analysis , Corrosion , Humans , Ions , Magnesium/analysis , Oxides/analysis , Peptide Hydrolases/metabolism , Spectroscopy, Fourier Transform Infrared , Young Adult
8.
Article in English | MEDLINE | ID: mdl-25585386

ABSTRACT

Lead-based ABO3-type relaxors and related systems have numerous applications in modern technical devices because of their remarkably high dielectric permittivity and piezoelectric/electroelastic and electro-optic coefficients. However, lead is not desired from an environmental point of view, and to switch to alternative alkali-, Ba-, or Bi-based relaxor systems, one must understand in great detail the structural mesoscopic order and coupling processes responsible for the outstanding performance and multifunctionality of the exemplar Pb-based compounds. To elucidate the type of ferroic coupling, three relaxor compounds PbSc0.5Ta0.5O3 (PST), Pb0.78Ba0.22Sc0.5Ta0.5O3 (PST-Ba), and PbSc0.5Nb0.5O3 (PSN), were studied by polarized Raman scattering and acoustic emission at different temperatures and under an external electric field. The results reveal the coexistence of mesoscopic-scale ferroelectric and antiferroelectric coupling, which are predominantly related to B-site cations and A-site Pb cations, respectively. This suggests that the polar structural state of relaxors is frustrated ferrielectric. The presence of A-site cations with affinity to off-center is significant for the development of mesoscopic-scale antiferroelectric order coexisting with the mesoscopic-scale ferroelectric order.

9.
Article in English | MEDLINE | ID: mdl-21937324

ABSTRACT

The exceptional properties of lead-based perovskite-type (ABO(3)) relaxor ferroelectrics are due to their structural inhomogeneities. At ambient conditions, the average structure is pseudocubic but rich in ferroic nanoregions too small to be directly studied by conventional diffraction analysis. However, combining in situ temperature and pressure diffraction and Raman scattering allows us to resolve the structural complexity of relaxors. Because of the different length and time scales of sensitivity, diffraction probes the long-range order, i.e., the structure averaged over time and space, whereas Raman spectroscopy can detect local structural deviations from the average structure via the anomalous Raman activity of the phonon modes that, when the symmetry of the average structure is considered, should not generate Raman peaks. Hence, the combined analysis of the long-range order induced at low temperatures or high pressures and of the phonon anomalies enhanced on temperature decrease or pressure increase can reveal the energetically preferred structural nanoclusters existing at ambient conditions. In this regard, high-pressure experiments are vital for understanding the nanoscale structure of relaxors. Using X-ray diffraction, neutron diffraction, and Raman scattering on stoichiometric and doped PbSc(0.5)Ta(0.5)O(3) and PbSc(0.5)Na(0.5)O(3), we demonstrate the existence of a pressure-induced cubic-to-rhombohedral continuous phase transition. The high-pressure structure has suppressed polar shifts of B-site cations, enhanced correlation of Pb-O ferroic species, and long-range ordered antiphase BO(6) octahedral tilts. The critical pressure is preceded by an intermediate pressure at which the coupling between off-centered Pb and B-cations is suppressed and octahedral tilting detectable by neutron diffraction is developed.

10.
Acta Biomater ; 7(6): 2704-15, 2011 Jun.
Article in English | MEDLINE | ID: mdl-21382530

ABSTRACT

The understanding of corrosion processes of metal implants in the human body is a key problem in modern biomaterial science. Because of the complicated and adjustable in vivo environment, in vitro experiments require the analysis of various physiological corrosion media to elucidate the underlying mechanism of "biological" metal surface modification. In this paper magnesium samples were incubated under cell culture conditions (i.e. including CO(2)) in electrolyte solutions and cell growth media, with and without proteins. Chemical mapping by high-resolution electron-induced X-ray emission spectroscopy and infrared reflection microspectroscopy revealed a complex structure of the formed corrosion layer. The presence of CO(2) in concentrations close to that in blood is significant for the chemistry of the oxidised layer. The presence of proteins leads to a less dense but thicker passivation layer which is still ion and water permeable, as osmolality and weight measurements indicate.


Subject(s)
Magnesium/chemistry , Spectrum Analysis/methods , Microscopy, Electron, Scanning
11.
Acta Crystallogr B ; 66(Pt 3): 280-91, 2010 Jun.
Article in English | MEDLINE | ID: mdl-20484799

ABSTRACT

We have employed a combination of powder neutron diffraction and single-crystal synchrotron X-ray diffraction to characterize the pressure-induced phase transitions that occur in the perovskite-type relaxor ferroelectric PbSc(0.5)Ta(0.5)O(3) (PST) and Pb(0.78)Ba(0.22)Sc(0.5)Ta(0.5)O(3) (PST-Ba). At ambient pressure the symmetry of the average structure for both compounds is Fm3m as a result of partial ordering of the Sc and Ta cations on the octahedral sites. At pressures above the phase transition both the neutron and X-ray diffraction patterns exhibit an increase in the intensities of h,k,l = all odd reflections and no appearance of additional Bragg reflections. Synchrotron single-crystal X-ray diffraction data show that the intensity of hhh peaks, h = 2n + 1, does not change with pressure. This indicates that the structural distortion arising from the phase transition has a glide-plane pseudo-symmetry along the 111 cubic directions. Rietveld refinement to the neutron powder data shows that the high-pressure phase has either R3c or R3 symmetry, depending on whether the presence of 1:1 octahedral cation ordering is neglected or taken into account, and comprises octahedral tilts of the type a(-)a(-)a(-) that continuously evolve with pressure. The cubic-to-rhombohedral transition is also marked by a large increase in the anisotropy of the displacement ellipsoids of the Pb cations, indicating larger displacements of Pb cations along the rhombohedral threefold axis rather than within the perpendicular plane. For PST the anisotropy of the Pb displacement parameters decreases at approximately 3 GPa above the phase-transition pressure. For both PST and PST-Ba the average magnitudes of Pb-cation displacements expressed in terms of isotropic displacement ellipsoids gradually decrease over the entire pressure range from ambient to 7.35 GPa.

12.
J Biomed Mater Res A ; 88(1): 195-204, 2009 Jan.
Article in English | MEDLINE | ID: mdl-18286604

ABSTRACT

Changes in the chemistry and structure of enamel due to a non-peroxide-based home bleaching product (Rapid White) were studied in vitro using attenuated total reflectance-infrared spectroscopy, Raman spectroscopy, electron probe microanalysis, flame atomic absorption spectroscopy, and total reflection X-ray fluorescence. The results revealed that the citric-acid-containing gel-like component of the bleaching system substantially impacts on the dental hard tissue. Enamel is affected on several levels: (i) the organic component is removed from superficial and deeper enamel layers and remnants of the bleaching gel are embedded in the emptied voids; (ii) cracks and chemical inhomogeneities with respect to Ca and P occur on the surface; and (iii) within a submicron layer of enamel, the Ca-O bond strength in apatite decreases, thus enhancing calcium leakage from the bleached enamel hard tissue.


Subject(s)
Dental Enamel/pathology , Tooth Bleaching/adverse effects , Calcium , Citric Acid , Dental Enamel/drug effects , Gels , Home Care Services , Humans , Phosphorus , Spectrum Analysis , Tooth Bleaching/methods , Tooth Demineralization/chemically induced
14.
J Phys Chem B ; 112(29): 8840-8, 2008 Jul 24.
Article in English | MEDLINE | ID: mdl-18588337

ABSTRACT

Attenuated total reflectance infrared spectroscopy and complementary scanning electron microscopy were applied to analyze the surface structure of enamel apatite exposed to citric acid and to investigate the protective potential of fluorine-containing reagents against citric acid-induced erosion. Enamel and, for comparison, geological hydroxylapatite samples were treated with aqueous solutions of citric acid and sodium fluoride of different concentrations, ranging from 0.01 to 0.5 mol/L for citric acid solutions and from 0.5 to 2.0% for fluoride solutions. The two solutions were applied either simultaneously or consecutively. The citric acid-induced structural modification of apatite increases with the increase in the citric acid concentration and the number of treatments. The application of sodium fluoride alone does not suppress the atomic level changes in apatite exposed to acidic agents. The addition of sodium fluoride to citric acid solutions leads to formation of surface CaF2 and considerably reduces the changes in the apatite P-O-Ca framework. However, the CaF2 globules deposited on the enamel surface seem to be insufficient to prevent the alteration of the apatite structure upon further exposure to acidic agents. No evidence for fluorine-induced recovery of the apatite structure was found.


Subject(s)
Cariostatic Agents/pharmacology , Citric Acid , Dental Enamel/chemistry , Durapatite/chemistry , Fluorides/pharmacology , Sodium Fluoride , Tooth Erosion , Calcium/chemistry , Calcium/metabolism , Calcium Fluoride/chemistry , Calcium Fluoride/metabolism , Dental Enamel/metabolism , Durapatite/metabolism , Hydrogen-Ion Concentration , Microscopy, Electron, Scanning , Oxygen/chemistry , Oxygen/metabolism , Phosphorus/chemistry , Phosphorus/metabolism , Solutions/chemistry , Spectrophotometry, Infrared , Tooth Erosion/chemically induced , Tooth Erosion/pathology , Tooth Erosion/prevention & control , Water/chemistry
15.
J Biomed Mater Res B Appl Biomater ; 81(2): 499-507, 2007 May.
Article in English | MEDLINE | ID: mdl-17034011

ABSTRACT

The gradient of structural alteration and molecular exchange across CO(2) laser-irradiated areas in dental enamel was analyzed by Raman and attenuated total reflectance infrared microspectroscopy. The type and the degree of structural changes in morphologically distinguishable zones within the laser spot vary depending on the laser-irradiation parameters--power (1 and 3 W), treatment time (5 and 10 s), and operational mode (super pulse and continuous wave). Using higher power, irrespective of the operation mode, the enamel tissue ablates and a crater is formed. The prevalent phase at the bottom of the crater is dehydrated O(2) (2-)-bearing apatite, that is, the fundamental framework topology is preserved. Additional nonapatite calcium phosphate phases are located mainly at the slope of the laser crater. No structural transformation of mineral component was detected aside the crater rim, only a CO(3)-CO(2) exchange, which decays with the radial distance. A lower-power laser irradiation slightly roughens the enamel surface and the structural modification of enamel apatite is considerably weaker for continuous wave than for super pulse mode. Prolonged low-power laser treatment results in recrystallization, and thus structural recovering of apatite might be of clinical relevance for enamel surface treatments.


Subject(s)
Dental Enamel/chemistry , Dental Enamel/radiation effects , Laser Therapy , Apatites/chemistry , Apatites/radiation effects , Calcium Phosphates/chemistry , Calcium Phosphates/radiation effects , Carbon Dioxide , Hot Temperature , Humans , In Vitro Techniques , Materials Testing , Spectrophotometry, Infrared , Spectrum Analysis, Raman , X-Ray Diffraction
SELECTION OF CITATIONS
SEARCH DETAIL