ABSTRACT
Background: Plexiform neurofibromas (pNFs) are benign neoplasms, primarily originating from Schwann cells, posing challenges in patients with type 1 neurofibromatosis (NF1) due to pain, disfigurement, compression of vital structures and potential for malignancy. Selumetinib, a MEK1/2 inhibitor, has shown promising results in treating inoperable pNFs, with clinical trials demonstrating tumor volume reduction and improved patient-reported outcomes. Despite its efficacy, dermatologic toxicities may impact the quality of life and treatment adherence. Evaluating the frequency and spectrum of such effects is crucial for effective management. Methods: In a four-year retrospective and prospective study, pediatric NF1 patients with symptomatic, inoperable plexiform neurofibromas (pNFs) were treated with selumetinib. Eligibility criteria included significant morbidity, pNF size exceeding 3 cm or surgical inoperability, and performance status >70%. Hematological, liver, lung and cardiac assessments established baseline health. Selumetinib, orally administered at 25 mg/m2 twice, was administered for two years unless a response warranting extension occurred. Cutaneous AEs were documented and graded by severity according to CTCAE v5.0, with evaluations every three to six months. The impact on symptoms and pNF size was systematically recorded, and biopsies characterized histopathological features in those patients requiring surgery. Results: Twenty patients were enrolled, with an average age at therapy initiation of 11.6 years. Cutaneous side effects were common, with all patients experiencing at least one and a median of two per patient. Xerosis, paronychia and acneiform rash were prevalent. Notably, pre-pubertal individuals were more susceptible to xerosis. Acneiform rash had a higher incidence in older patients and those with skin phototypes II and III. Successful management involved tailored approaches, such as clindamycin for acneiform rash and topical agents for paronychia. Hair abnormalities, including color changes and thinning, occurred, with female patients at higher risk for the latter. Paronychia presented challenges, necessitating various interventions, including surgical approaches. AEs led to treatment suspension in 20% of patients, with tumor rebound observed in 75%. Conclusions: According to our experience, successful management of selumetinib-induced cutaneous AEs requires tailored strategies including surgery. AEs might indirectly determine pNF regrowth due to therapy suspension. We thus emphasize the pivotal role of addressing cutaneous reactions for effective selumetinib management in pediatric patients.
ABSTRACT
BACKGROUND: Spinal muscular atrophy (SMA) type 1 is a severe condition leading to early respiratory failure. Treatment options have become available, yet respiratory outcome measures in SMA type 1 are limited. The aim of this study was to assess the respiratory pattern in SMA type 1 patients via structured light plethysmography (SLP). SLP measures the thoraco-abdominal movements by projecting a light grid onto the anterior thoraco-abdominal surface. METHODS: Cross-sectional study of consecutive children with SMA type 1. All children underwent motor assessment (CHOP-INTEND) and one-minute tidal breathing recording by SLP in supine position while self-ventilating in room air. The Respiratory rate, the abdominal vs. chest contribution to breath (Relative Expired Abdomen%, Relative Expired Chest%) and the severity of thoraco-abdominal paradox (Phase Angle) were acquired. RESULTS: Nineteen patients were included, median (IQR) age 2.3 years (1.4-7.9). Their respiratory pattern captured via SLP showed a raised median (IQR) respiratory rate per age of 33.5 bpm (26.6-41.7), a prevalent abdominal contribution to tidal breathing with median (IQR) Relative Expired Abdomen 77% (68-90) vs. Chest 23% (10-32). Thoracoabdominal paradox was detected (median Phase Angle 48.70°) and its severity correlated negatively with CHOP-INTEND (r -0.8, p < 0.01). CONCLUSIONS: SLP captured and quantified the respiratory features of infants and children with SMA type 1.
ABSTRACT
BACKGROUND: The development of e-health technologies for teleconsultation and exchange of knowledge is one of the core purposes of European Reference Networks (ERNs), including the ERN EURO-NMD for rare neuromuscular diseases. Within ERNs, the Clinical Patient Management System (CPMS) is a web-based platform that seeks to boost active collaboration within and across the network, implementing data sharing. Through CPMS, it is possible to both discuss patient cases and to make patients' data available for registries and databases in a secure way. In this view, CPMS may be considered a sort of a temporary storage for patients' data and an effective tool for data sharing; it facilitates specialists' consultation since rare diseases (RDs) require multidisciplinary skills, specific, and outstanding clinical experience. Following European Union (EU) recommendation, and to promote the use of CPMS platform among EURO-NMD members, a twelve-month pilot project was set up to train the 15 Italian Health Care Providers (HCPs). In this paper, we report the structure, methods, and results of the teaching course, showing that tailored, ERN-oriented, training can significantly enhance the profitable use of the CPMS. RESULTS: Throughout the training course, 45 professionals learned how to use the many features of the CPMS, eventually opening 98 panels of discussion-amounting to 82% of the total panels included in the EURO-NMD. Since clinical, genetic, diagnostic, and therapeutic data of patients can be securely stored within the platform, we also highlight the importance of this platform as an effective tool to discuss and share clinical cases, in order to ease both case solving and data storing. CONCLUSIONS: In this paper, we discuss how similar course could help implementing the use of the platform, highlighting strengths and weaknesses of e-health for ERNs. The expected result is the creation of a "map" of neuromuscular patients across Europe that might be improved by a wider use of CPMS.
Subject(s)
Information Dissemination , Rare Diseases , Humans , Pilot Projects , Europe , European UnionABSTRACT
Aromatic l-amino acid decarboxylase (AADC) deficiency is a rare autosomal recessive neurometabolic disorder caused by biallelic pathogenic variants in the DDC gene and mainly characterized by developmental delay, hypotonia, and oculogyric crises. Early diagnosis is crucial for correct patient management; however, many patients remain misdiagnosed or undiagnosed due to the rarity and clinical heterogeneity of the disorder especially in the milder forms. Here, we applied exome sequencing approach by screening 2000 paediatric patients with neurodevelopmental disorders to identify possible new AADC variants and AADC deficiency patients. We identified five distinct DDC variants in two unrelated individuals. Patient #1 harboured two compound heterozygous DDC variants: c.436-12T > C and c.435 + 24A>C and presented with psychomotor delay, tonic spasms, and hyperreactivity. Patient #2 had three homozygous AADC variants: c.1385G > A; p.Arg462Gln, c.234C > T; p.Ala78 = , and c.201 + 37A > G and presented with developmental delay and myoclonic seizures. The variants were classified as benign class I variants and therefore non-causative according to the ACMG/AMP guidelines. Since the AADC protein is a structural and functional obligate homodimer, we evaluated the possible AADC polypeptide chain combinations in the two patients and determined the effects resulting from the amino acid substitution Arg462Gln. Our patients carrying DDC variants presented clinical manifestations not precisely overlapped to the classical symptoms exhibited by the most severe AADC deficiency cases. However, screening data derived from exome sequencing in patients featuring wide-range symptoms related to neurodevelopmental disorders may help to identify AADC deficiency patients, especially when applied to larger cohorts.
Subject(s)
Amino Acid Metabolism, Inborn Errors , Neurodevelopmental Disorders , Humans , Child , Exome Sequencing , Aromatic-L-Amino-Acid Decarboxylases/genetics , Amino Acid Metabolism, Inborn Errors/diagnosis , Amino Acid Metabolism, Inborn Errors/genetics , Neurodevelopmental Disorders/diagnosis , Neurodevelopmental Disorders/genetics , Amino Acids/geneticsABSTRACT
Contactin-associated protein-like 2 (CNTNAP2) gene encodes for CASPR2, a presynaptic type 1 transmembrane protein, involved in cell-cell adhesion and synaptic interactions. Biallelic CNTNAP2 loss has been associated with "Pitt-Hopkins-like syndrome-1" (MIM#610042), while the pathogenic role of heterozygous variants remains controversial. We report 22 novel patients harboring mono- (n = 2) and bi-allelic (n = 20) CNTNAP2 variants and carried out a literature review to characterize the genotype-phenotype correlation. Patients (M:F 14:8) were aged between 3 and 19 years and affected by global developmental delay (GDD) (n = 21), moderate to profound intellectual disability (n = 17) and epilepsy (n = 21). Seizures mainly started in the first two years of life (median 22.5 months). Antiseizure medications were successful in controlling the seizures in about two-thirds of the patients. Autism spectrum disorder (ASD) and/or other neuropsychiatric comorbidities were present in nine patients (40.9%). Nonspecific midline brain anomalies were noted in most patients while focal signal abnormalities in the temporal lobes were noted in three subjects. Genotype-phenotype correlation was performed by also including 50 previously published patients (15 mono- and 35 bi-allelic variants). Overall, GDD (p < 0.0001), epilepsy (p < 0.0001), hyporeflexia (p = 0.012), ASD (p = 0.009), language impairment (p = 0.020) and severe cognitive impairment (p = 0.031) were significantly associated with the presence of biallelic versus monoallelic variants. We have defined the main features associated with biallelic CNTNAP2 variants, as severe cognitive impairment, epilepsy and behavioral abnormalities. We propose CASPR2-deficiency neurodevelopmental disorder as an exclusively recessive disease while the contribution of heterozygous variants is less likely to follow an autosomal dominant inheritance pattern.
Subject(s)
Autism Spectrum Disorder , Epilepsy , Humans , Child , Autism Spectrum Disorder/genetics , Developmental Disabilities/genetics , Epilepsy/genetics , Genetic Association Studies , Seizures/genetics , Contactins/geneticsABSTRACT
Cerebellar hypoplasia and dysplasia encompass a group of clinically and genetically heterogeneous disorders frequently associated with neurodevelopmental impairment. The Neuron Navigator 2 (NAV2) gene (MIM: 607,026) encodes a member of the Neuron Navigator protein family, widely expressed within the central nervous system (CNS), and particularly abundant in the developing cerebellum. Evidence across different species supports a pivotal function of NAV2 in cytoskeletal dynamics and neurite outgrowth. Specifically, deficiency of Nav2 in mice leads to cerebellar hypoplasia with abnormal foliation due to impaired axonal outgrowth. However, little is known about the involvement of the NAV2 gene in human disease phenotypes. In this study, we identified a female affected with neurodevelopmental impairment and a complex brain and cardiac malformations in which clinical exome sequencing led to the identification of NAV2 biallelic truncating variants. Through protein expression analysis and cell migration assay in patient-derived fibroblasts, we provide evidence linking NAV2 deficiency to cellular migration deficits. In model organisms, the overall CNS histopathology of the Nav2 hypomorphic mouse revealed developmental anomalies including cerebellar hypoplasia and dysplasia, corpus callosum hypo-dysgenesis, and agenesis of the olfactory bulbs. Lastly, we show that the NAV2 ortholog in Drosophila, sickie (sick) is widely expressed in the fly brain, and sick mutants are mostly lethal with surviving escapers showing neurobehavioral phenotypes. In summary, our results unveil a novel human neurodevelopmental disorder due to genetic loss of NAV2, highlighting a critical conserved role of the NAV2 gene in brain and cerebellar development across species.
Subject(s)
Brain , Nervous System Malformations , Animals , Female , Humans , Mice , Cerebellum/abnormalities , NeuronsABSTRACT
Background and Objectives: Clinical manifestations in STXBP1 developmental and epileptic encephalopathy (DEE) vary in severity and outcome, and the genotypic spectrum is diverse. We aim to trace the neurodevelopmental trajectories in individuals with STXBP1-DEE and dissect the relationship between neurodevelopment and epilepsy. Methods: Retrospective standardized clinical data were collected through international collaboration. A composite neurodevelopmental score system compared the developmental trajectories in STXBP1-DEE. Results: Forty-eight patients with de novo STXBP1 variants and a history of epilepsy were included (age range at the time of the study: 10 months to 35 years, mean 8.5 years). At the time of inclusion, 65% of individuals (31/48) had active epilepsy, whereas 35% (17/48) were seizure free, and 76% of those (13/17) achieved remission within the first year of life. Twenty-two individuals (46%) showed signs of developmental impairment and/or neurologic abnormalities before epilepsy onset. Age at seizure onset correlated with severity of developmental outcome and the developmental milestones achieved, with a later seizure onset associated with better developmental outcome. In contrast, age at seizure remission and epilepsy duration did not affect neurodevelopmental outcomes. Overall, we did not observe a clear genotype-phenotype correlation, but monozygotic twins with de novo STXBP1 variant showed similar phenotype and parallel disease course. Discussion: The disease course in STXBP1-DEE presents with 2 main trajectories, with either early seizure remission or drug-resistant epilepsy, and a range of neurodevelopmental outcomes from mild to profound intellectual disability. Age at seizure onset is the only epilepsy-related feature associated with neurodevelopment outcome. These findings can inform future dedicated natural history studies and trial design.
ABSTRACT
BACKGROUND: Lafora disease (LD) is a neurodegenerative disorder featuring action and stimulus-sensitive myoclonus, epilepsy, and cognitive deterioration. Mutations in the EPM2A/EPM2B genes classically prove causative for the disease in most cases. Since full-field electroretinogram (ffERG) may reveal early-stage changes in a wide spectrum of diseases, we aimed to evaluate retinal cones and rods dysfunction in a cohort of Italian LD patients. METHODS: Patients with genetically confirmed LD were recruited and subjected to ffERG analysis following the International Society for Clinical Electrophysiology of Vision (ISCEV) protocol. RESULTS: Six patients aged between 13 and 26 years (mean 19.5 years) were included. The mean age at disease onset was 12.5 years with a mean disease duration of 7 years. The ffERG analysis revealed a global mild to severe generalized cones dysfunction in all patients. Linear correlation was identified between disease stage and the degree of cones and rods dysfunction, as well as between the type of mutation and the cones and rods dysfunction. CONCLUSIONS: This study brings further evidence of early retinal alterations in LD patients. The cones and rods dysfunction grade is related to disease duration. The ffERG is an important tool to determine the disease stage, allowing to evaluate either natural or treatment-related disease progression in a minimally invasive way.
Subject(s)
Lafora Disease , Myoclonic Epilepsies, Progressive , Humans , Lafora Disease/genetics , Mutation/genetics , Myoclonic Epilepsies, Progressive/genetics , Phenotype , Protein Tyrosine Phosphatases, Non-Receptor/genetics , Ubiquitin-Protein Ligases/geneticsABSTRACT
Limb-girdle muscular dystrophy R3, a rare genetic disorder affecting the limb proximal muscles, is caused by mutations in the α-sarcoglycan gene (Sgca) and aggravated by an immune-mediated damage, finely modulated by the extracellular (e)ATP/purinoceptors axis. Currently, no specific drugs are available. The aim of this study was to evaluate the therapeutic effectiveness of a selective P2X7 purinoreceptor antagonist, A438079. Sgca knockout mice were treated with A438079 every two days at 3 mg/Kg for 24 weeks. The P2X7 antagonist improved clinical parameters by ameliorating mice motor function and decreasing serum creatine kinase levels. Histological analysis of muscle morphology indicated a significant reduction of the percentage of central nuclei, of fiber size variability and of the extent of local fibrosis and inflammation. A cytometric characterization of the muscle inflammatory infiltrates showed that A438079 significantly decreased innate immune cells and upregulated the immunosuppressive regulatory T cell subpopulation. In α-sarcoglycan null mice, the selective P2X7 antagonist A438079 has been shown to be effective to counteract the progression of the dystrophic phenotype and to reduce the inflammatory response. P2X7 antagonism via selective inhibitors could be included in the immunosuppressant strategies aimed to dampen the basal immune-mediated damage and to favor a better engraftment of gene-cell therapies.
ABSTRACT
INTRODUCTION/AIMS: Currently, there are no straightforward guidelines for the clinical and diagnostic management of hyperCKemia, a frequent and nonspecific presentation in muscle diseases. Therefore, we aimed to describe our diagnostic workflow for evaluating patients with this condition. METHODS: We selected 83 asymptomatic or minimally symptomatic patients with persistent hyperCKemia for participation in this Italian multicenter study. Patients with facial involvement and distal or congenital myopathies were excluded, as were patients with suspected inflammatory myopathies or predominant respiratory or cardiac involvement. All patients underwent a neurological examination and nerve conduction and electromyography studies. The first step of the investigation included a screening for Pompe disease. We then evaluated the patients for myotonic dystrophy type II-related CCTG expansion and excluded patients with copy number variations in the DMD gene. Subsequently, the undiagnosed patients were investigated using a target gene panel that included 20 genes associated with isolated hyperCKemia. RESULTS: Using this approach, we established a definitive diagnosis in one third of the patients. The detection rate was higher in patients with severe hyperCKemia and abnormal electromyographic findings. DISCUSSION: We have described our diagnostic workflow for isolated hyperCKemia, which is based on electrodiagnostic data, biochemical screening, and first-line genetic investigations, followed by successive targeted sequencing panels. Both clinical signs and electromyographic abnormalities are associated with increased diagnostic yields.
Subject(s)
Glycogen Storage Disease Type II , Muscular Diseases , Creatine Kinase , DNA Copy Number Variations , Electromyography , Glycogen Storage Disease Type II/diagnosis , HumansABSTRACT
Introduction: Cannabidiol (CBD) has antiseizure properties but no psychoactive effects. Randomized controlled trials of an oral, pharmaceutical formulation of highly purified CBD are promising; however, data regarding other formulations are sparse and anecdotal. We evaluated the effectiveness of add-on therapy with a standardized CBD-based oil in treatment-resistant epilepsy (TRE) patients. Materials and Methods: An open retrospective study was carried out on patients with refractory epilepsy of different etiology. We reviewed clinical data from medical charts and caregiver's information. Participants received add-on with 24% CBD-based oil, sublingually administered, at the starting dose of 5-10 mg/[kg·day] up to the maximum dose of 50 mg/[kg·day], based on clinical efficacy. Efficacy was evaluated based on patients being seizure free or experiencing at ≥50% improvement on seizure frequency. Tolerability and suspected adverse drug reaction data were also analyzed. Results: We included 37 patients (46% female) with a median age of 16.1 (range: 2-54) years. Twenty-two (60%) patients suffered from epileptic encephalopathy, 9 (24%) from focal epilepsy, and 6 (16%) from generalized epilepsy. Mean follow-up duration was 68 (range: 24-72) weeks. The average age at seizure onset was 3.8±2.1 years (range: 7 days-21 years). The median achieved CBD-based oil dose was 4.2±11.4 (range: 0.6-50) mg/[kg·day]. At 40-month follow-up, 7 (19%) patients were seizure free, 27 (73%) reported >50% improvement, 2 (5%) patients reported <50% improvement, and 1 patient discontinued therapy due to lack of efficacy. Weaning from concomitant antiepileptic drugs was obtained after 24 weeks from CBD introduction in 10 subjects. Mild and transitory adverse events, including somnolence or loss of appetite, occurred in nine (25%) patients. Discussion and Conclusion: We showed the efficacy of a CBD-based oil formulation with few significant side effects in patients with TRE of various etiologies.
Subject(s)
Cannabidiol , Drug-Related Side Effects and Adverse Reactions , Epilepsy, Generalized , Epilepsy , Adolescent , Adult , Anticonvulsants/adverse effects , Cannabidiol/adverse effects , Child , Child, Preschool , Drug-Related Side Effects and Adverse Reactions/drug therapy , Epilepsy/chemically induced , Epilepsy, Generalized/chemically induced , Female , Humans , Male , Middle Aged , Retrospective Studies , Seizures/drug therapy , Young AdultABSTRACT
Background: Despite the wide availability of novel anti-seizure medications (ASMs), 30% of patients with epilepsy retain persistent seizures with a significant burden in comorbidity and an increased risk of premature death. This review aims to discuss the therapeutic strategies, both pharmacological and non-, which are currently in the pipeline. Methods: PubMed, Scopus, and EMBASE databases were screened for experimental and clinical studies, meta-analysis, and structured reviews published between January 2018 and September 2021. The terms "epilepsy," "treatment" or "therapy," and "novel" were used to filter the results. Conclusions: The common feature linking all the novel therapeutic approaches is the spasmodic rush toward precision medicine, aiming at holistically evaluating patients, and treating them accordingly as a whole. Toward this goal, different forms of intervention may be embraced, starting from the choice of the most suitable drug according to the type of epilepsy of an individual or expected adverse effects, to the outstanding field of gene therapy. Moreover, innovative insights come from in-vitro and in-vivo studies on the role of inflammation and stem cells in the brain. Further studies on both efficacy and safety are needed, with the challenge to mature evidence into reliable assets, ameliorating the symptoms of patients, and answering the challenges of this disease.
ABSTRACT
The role of muscle biopsy in the diagnostic workup of floppy infants is controversial. Muscle sampling is invasive, and often, results are not specific. The rapid expansion of genetic approach has made the muscle histopathology analysis less crucial. This study aims to assess the role and efficacy of muscle histopathology in the diagnostic algorithm of hypotonia in early infancy through a retrospective analysis of 197 infants who underwent muscle biopsy in their first 18 months of life. Data analysis revealed that 92/197 (46.7%) of muscle biopsies were non-specific (80) or normal (12), not allowing a specific diagnosis. In 41/197 (20.8%) cases, biopsy suggested a metabolic or mitochondrial myopathy, while in 23/197 cases (11.7%), we found evidence of muscular dystrophy. In 19/197 cases (9.7%), histopathology characteristics of a congenital myopathy were reported. In 22/197 cases (11.7%), the histopathological study indicated presence of a neurogenic damage. Overall, 46 diagnoses were then achieved by oriented genetic tests. Muscle biopsy results were consistent with genetic results in 90% of cases. Diagnostic algorithms for the diagnosis of a floppy infant are largely missing. Muscle biopsy alone can lead to a diagnosis, help the clinician in the choice of a genetic test, or even modify a diagnosis made previously.
ABSTRACT
BACKGROUND: Heterozygous variants in CNTNAP2 have been implicated in a wide range of neurological phenotypes, including intellectual disability (ID), epilepsy, autistic spectrum disorder (ASD), and impaired language. However, heterozygous variants can also be found in unaffected individuals. Biallelic CNTNAP2 variants are rarer and cause a well-defined genetic syndrome known as CASPR2 deficiency disorder, a condition characterised by ID, early-onset refractory epilepsy, language impairment, and autistic features. CASE-REPORT: A 7-year-old boy presented with hyperkinetic stereotyped movements that started during early infancy and persisted over childhood. Abnormal movements consisted of rhythmic and repetitive shaking of the four limbs, with evident stereotypic features. Additional clinical features included ID, attention deficit-hyperactivity disorder (ADHD), ASD, and speech impairment, consistent with CASPR2 deficiency disorder. Whole-genome array comparative genomic hybridization detected a maternally inherited 0.402 Mb duplication, which involved intron 1, exon 2, and intron 2 of CNTNAP2 (c.97 +?_209-?dup). The affected region in intron 1 contains a binding site for the transcription factor FOXP2, potentially leading to abnormal CNTNAP2 expression regulation. Sanger sequencing of the coding region of CNTNAP2 also identified a paternally-inherited missense variant c.2752C > T, p.(Leu918Phe). CONCLUSION: This case expands the molecular and phenotypic spectrum of CASPR2 deficiency disorder, suggesting that Hyperkinetic stereotyped movements may be a rare, yet significant, clinical feature of this complex neurological disorder. Furthermore, the identification of an in-frame, largely non-coding duplication in CNTNAP2 points to a sophisticated underlying molecular mechanism, likely involving impaired FOXP2 binding.
Subject(s)
Gene Duplication , Membrane Proteins/genetics , Mutation, Missense , Nerve Tissue Proteins/genetics , Stereotypic Movement Disorder/genetics , Child , Forkhead Transcription Factors/genetics , Heterozygote , Humans , MaleABSTRACT
Early infantile epileptic encephalopathy 38 (EIEE38, MIM #617020) is caused by biallelic variants in ARV1, encoding a transmembrane protein of the endoplasmic reticulum with a pivotal role in glycosylphosphatidylinositol (GPI) biosynthesis. We ascertained seven new patients from six unrelated families harboring biallelic variants in ARV1, including five novel variants. Affected individuals showed psychomotor delay, hypotonia, early onset refractory seizures followed by regression and specific neuroimaging features. Flow cytometric analysis on patient fibroblasts showed a decrease in GPI-anchored proteins on the cell surface, supporting a lower residual activity of the mutant ARV1 as compared to the wildtype. A rescue assay through the transduction of lentivirus expressing wild type ARV1 cDNA effectively rescued these alterations. This study expands the clinical and molecular spectrum of the ARV1-related encephalopathy, confirming the essential role of ARV1 in GPI biosynthesis and brain function.
Subject(s)
Genetic Association Studies , Genetic Predisposition to Disease , Membrane Proteins/deficiency , Phenotype , Spasms, Infantile/diagnosis , Spasms, Infantile/genetics , Alleles , Amino Acid Substitution , Brain/abnormalities , Carrier Proteins/genetics , DNA Mutational Analysis , Facies , Female , GPI-Linked Proteins/biosynthesis , Genetic Association Studies/methods , Glycosylphosphatidylinositols/metabolism , Humans , Magnetic Resonance Imaging , Male , Membrane Proteins/genetics , Mutation , Pedigree , Pregnancy , Prenatal Diagnosis/methods , Spasms, Infantile/metabolismABSTRACT
AIM: Since the immune system plays a role in the pathogenesis of several muscular dystrophies, we aim to characterize several muscular inflammatory features in α- (LGMD R3) and γ-sarcoglycanopathies (LGMD R5). MATERIALS AND METHODS: We explored the expression of major histocompatibility complex class I molecules (MHCI), and we analyzed the composition of the immune infiltrates in muscle biopsies from 10 patients with LGMD R3 and 8 patients with LGMD R5, comparing the results to Duchenne muscular dystrophy patients (DMD). RESULTS: A consistent involvement of the immune response was observed in sarcoglycanopathies, although it was less evident than in DMD. LGMD R3-R5 and DMD shared an abnormal expression of MHCI, and the composition of the muscular immune cell infiltrate was comparable. CONCLUSION: These findings might serve as a rationale to fine-tune a disease-specific immunomodulatory regimen, particularly relevant in view of the rapid development of gene therapy for sarcoglycanopathies.
Subject(s)
Muscular Dystrophies , Myositis , Sarcoglycanopathies , Biopsy , Humans , Muscle, Skeletal , Sarcoglycanopathies/geneticsABSTRACT
Wieacker-Wolff syndrome (WWS) is an X-linked Arthrogryposis Multiplex Congenita (AMC) disorder associated with broad neurodevelopmental impairment. The genetic basis of WWS lies in hemizygous pathogenic variants in ZC4H2, encoding a C4H2 type zinc-finger nuclear factor abundantly expressed in the developing human brain. The main clinical features described in WWS families carrying ZC4H2 pathogenic variants encompass having a short stature, microcephaly, birth respiratory distress, arthrogryposis, hypotonia, distal muscle weakness, and broad neurodevelopmental delay. We hereby report a Sicilian family with a boy clinically diagnosed with WWS and genetically investigated with exome sequencing (ES), leading to the identification of a c.593G>A (p. R198Q) hemizygous pathogenic variant in the ZC4H2 gene. During the first year of life, the onset of central hypoadrenalism led to recurrent hypoglycemic events, which likely contributed to seizure susceptibility. Also, muscle biopsy studies confirmed a pathology of the muscle tissue and revealed peculiar abnormalities of the neuromuscular junction. In conclusion, we expand the phenotypic spectrum of the WWS-related neurodevelopmental disorders and discuss the role of ZC4H2 in the context of the potential neuroendocrinological and neuromuscular features associated with this condition.
ABSTRACT
OBJECTIVE: To describe the clinical and genetic findings in a cohort of individuals with bathing epilepsy, a rare form of reflex epilepsy. METHODS: We investigated by Sanger and targeted resequencing the SYN1 gene in 12 individuals from 10 different families presenting with seizures triggered primarily by bathing or showering. An additional 12 individuals with hot-water epilepsy were also screened. RESULTS: In all families with bathing epilepsy, we identified 8 distinct pathogenic or likely pathogenic variants and 2 variants of unknown significance in SYN1, 9 of which are novel. Conversely, none of the individuals with hot-water epilepsy displayed SYN1 variants. In mutated individuals, seizures were typically triggered by showering or bathing regardless of the water temperature. Additional triggers included fingernail clipping, haircutting, or watching someone take a shower. Unprovoked seizures and a variable degree of developmental delay were also common. CONCLUSION: Bathing epilepsy is genetically distinct reflex epilepsy caused mainly by SYN1 mutations.