Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters








Database
Language
Publication year range
1.
Antioxidants (Basel) ; 13(9)2024 Sep 16.
Article in English | MEDLINE | ID: mdl-39334777

ABSTRACT

This study investigates the effects of the essential oil from Amomum villosum (EOA) on liver-protective effects in Nile tilapia (Oreochromis niloticus), utilizing a multidisciplinary approach that integrates physiological assessments and transcriptomic and metabolomic analyses. Fish were fed diets containing 2 g/kg of EOA over a 56-day trial, with a no-EOA diet serving as the control. The results demonstrate that EOA supplementation improves liver histology, enhances antioxidant capacities, and reduces inflammation in tilapia. The transcriptomic analysis revealed significant alterations in gene expression profiles related to RNA splicing, metabolism, and disease pathways. The identification of differential genes and disease databases identified key target genes associated with the primary component of EOA for its anti-hepatobiliary disease effects. Furthermore, a molecular docking analysis of EOA major components with core differentially expressed genes in the hepatobiliary syndrome indicated that α-pinene is a potential Hsp90 inhibitor, which may prevent inflammation. A metabolomic analysis further demonstrated that EOA supplementation leads to notable changes in liver phospholipids, fatty acids, and carbohydrate metabolism. These findings underscore the potential of EOA as a natural additive for improving liver health in tilapia, offering valuable insights to the aquaculture industry for enhancing fish health and welfare in intensive farming systems.

2.
Microbiologyopen ; 9(11): e1116, 2020 11.
Article in English | MEDLINE | ID: mdl-32965800

ABSTRACT

To investigate the possible effects of sulfamonomethoxine (SMM) on Nile tilapia (Oreochromis niloticus), we quantitatively evaluated the microbial shifts in the intestines of Nile tilapia in response to different doses of SMM (200 and 300 mg/kg) using 16S rRNA gene sequencing. At the phylum level, the control group (0 mg kg-1  SMM) was dominated by Actinobacteria, Proteobacteria, and Firmicutes. In the treatment groups, Firmicutes, Proteobacteria, and Chloroflexi were the dominant phyla. Cluster analysis indicated that the two groups treated with SMM clustered together. Similarly, the bacterial families that dominated the control group differed from those dominating the treatment groups. The changes in intestinal microbial composition over time were similar between the two SMM treatment groups. In both groups, the abundances of some families, including the Bacillaceae, Streptococcaceae, and Pseudomonadaceae, increased first and then decreased. Overall, the addition of SMM to the feed changed the structure of the intestinal microbiota in Nile tilapia. This study improves our understanding of the impact of SMM on the intestinal microenvironment of Nile tilapia. Our results provide guidelines for the feasibility of SMM use in aquaculture production.


Subject(s)
Anti-Infective Agents/pharmacology , Bacteria/classification , Cichlids/microbiology , Gastrointestinal Microbiome/drug effects , Sulfamonomethoxine/pharmacology , Actinobacteria/isolation & purification , Animal Feed/analysis , Animals , Bacteria/genetics , Bacteria/isolation & purification , Chloroflexi/isolation & purification , Firmicutes/isolation & purification , Intestines/microbiology , Proteobacteria/isolation & purification , RNA, Ribosomal, 16S/genetics
SELECTION OF CITATIONS
SEARCH DETAIL