Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters








Database
Language
Publication year range
1.
Molecules ; 26(24)2021 Dec 11.
Article in English | MEDLINE | ID: mdl-34946581

ABSTRACT

Luteolin (LUT) is a natural pharmaceutical compound that is weakly water soluble and has low bioavailability when taken orally. As a result, the goal of this research was to create self-nanoemulsifying drug delivery systems (SNEDDS) for LUT in an attempt to improve its in vitro dissolution and hepatoprotective effects, resulting in increased oral bioavailability. Using the aqueous phase titration approach and the creation of pseudo-ternary phase diagrams with Capryol-PGMC (oil phase), Tween-80 (surfactant), and Transcutol-HP (co-emulsifier), various SNEDDS of LUT were generated. SNEDDS were assessed for droplet size, polydispersity index (PDI), zeta potential (ZP), refractive index (RI), and percent of transmittance (percent T) after undergoing several thermodynamic stability and self-nanoemulsification experiments. When compared to LUT suspension, the developed SNEDDS revealed considerable LUT release from all SNEDDS. Droplet size was 40 nm, PDI was <0.3, ZP was -30.58 mV, RI was 1.40, percent T was >98 percent, and drug release profile was >96 percent in optimized SNEDDS of LUT. For in vivo hepatoprotective testing in rats, optimized SNEDDS was chosen. When compared to LUT suspension, hepatoprotective tests showed that optimized LUT SNEDDS had a substantial hepatoprotective impact. The findings of this investigation suggested that SNEDDS could improve bioflavonoid LUT dissolution rate and therapeutic efficacy.


Subject(s)
Drug Delivery Systems , Liver/drug effects , Luteolin/pharmacology , Nanoparticles/chemistry , Protective Agents/pharmacology , Administration, Oral , Animals , Carbon Tetrachloride/pharmacology , Emulsions/administration & dosage , Emulsions/metabolism , Emulsions/pharmacology , Liver/metabolism , Luteolin/administration & dosage , Luteolin/metabolism , Male , Nanoparticles/administration & dosage , Nanoparticles/metabolism , Particle Size , Protective Agents/administration & dosage , Protective Agents/metabolism , Rats , Rats, Wistar , Solubility , Thermodynamics
2.
Oncogene ; 38(22): 4425, 2019 May.
Article in English | MEDLINE | ID: mdl-31068666

ABSTRACT

The original version of this article contained an error in Fig. 5a where the colours of the labels representing the Hinge and LBD of the AR were incorrect and did not match the corresponding exons. The corrected version of this Figure now appears in the article. The conclusions of this paper were not affected. The authors apologise for this error and any confusion caused.

3.
Oncogene ; 38(22): 4412-4424, 2019 05.
Article in English | MEDLINE | ID: mdl-30742096

ABSTRACT

Stem cell characteristics have been associated with treatment resistance and poor prognosis across many cancer types. The ability to induce and regulate the pathways that sustain these characteristic hallmarks of lethal cancers in a novel in vitro model would greatly enhance our understanding of cancer progression and treatment resistance. In this work, we present such a model, based simply on applying standard pluripotency/embryonic stem cell media alone. Core pluripotency stem cell master regulators (OCT4, SOX2 and NANOG) along with epithelial-mesenchymal transition (EMT) markers (Snail, Slug, vimentin and N-cadherin) were induced in human prostate, breast, lung, bladder, colorectal, and renal cancer cells. RNA sequencing revealed pathways activated by pluripotency inducing culture that were shared across all cancers examined. These pathways highlight a potential core mechanism of treatment resistance. With a focus on prostate cancer, the culture-based induction of core pluripotent stem cell regulators was shown to promote survival in castrate conditions-mimicking first line treatment resistance with hormonal therapies. This acquired phenotype was shown to be mediated through the upregulation of iodothyronine deiodinase DIO2, a critical modulator of the thyroid hormone signalling pathway. Subsequent inhibition of DIO2 was shown to supress expression of prostate specific antigen, the cardinal clinical biomarker of prostate cancer progression and highlighted a novel target for clinical translation in this otherwise fatal disease. This study identifies a new and widely accessible simple preclinical model to recreate and explore underpinning pathways of lethal disease and treatment resistance.

SELECTION OF CITATIONS
SEARCH DETAIL