Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters








Database
Language
Publication year range
1.
Nutr Diabetes ; 14(1): 43, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38862477

ABSTRACT

BACKGROUND: We previously reported that, among all the naturally occurring amino acids, L-valine is the most powerful luminal stimulator of glucagon-like peptide 1 (GLP-1) release from the upper part of the rat small intestine. This makes L-valine an interesting target for nutritional-based modulation of GLP-1 secretion. However, the molecular mechanism of L-valine-induced secretion remains unknown. METHODS: We aimed to investigate the effect of orally given L-valine in mice and to identify the molecular details of L-valine stimulated GLP-1 release using the isolated perfused rat small intestine and GLUTag cells. In addition, the effect of L-valine on hormone secretion from the distal intestine was investigated using a perfused rat colon. RESULTS: Orally given L-valine (1 g/kg) increased plasma levels of active GLP-1 comparably to orally given glucose (2 g/kg) in male mice, supporting that L-valine is a powerful stimulator of GLP-1 release in vivo (P > 0.05). Luminal L-valine (50 mM) strongly stimulated GLP-1 release from the perfused rat small intestine (P < 0.0001), and inhibition of voltage-gated Ca2+-channels with nifedipine (10 µM) inhibited the GLP-1 response (P < 0.01). Depletion of luminal Na+ did not affect L-valine-induced GLP-1 secretion (P > 0.05), suggesting that co-transport of L-valine and Na+ is not important for the depolarization necessary to activate the voltage-gated Ca2+-channels. Administration of the KATP-channel opener diazoxide (250 µM) completely blocked the L-valine induced GLP-1 response (P < 0.05), suggesting that L-valine induced depolarization arises from metabolism and opening of KATP-channels. Similar to the perfused rat small intestine, L-valine tended to stimulate peptide tyrosine-tyrosine (PYY) and GLP-1 release from the perfused rat colon. CONCLUSIONS: L-valine is a powerful stimulator of GLP-1 release in rodents. We propose that intracellular metabolism of L-valine leading to closure of KATP-channels and opening of voltage-gated Ca2+-channels are involved in L-valine induced GLP-1 secretion.


Subject(s)
Glucagon-Like Peptide 1 , Intestine, Small , KATP Channels , Valine , Animals , Glucagon-Like Peptide 1/metabolism , Male , Valine/pharmacology , Rats , Mice , Intestine, Small/metabolism , Intestine, Small/drug effects , KATP Channels/metabolism , Calcium Channels/metabolism , Colon/metabolism , Colon/drug effects , Mice, Inbred C57BL , Rats, Wistar
2.
Metabolites ; 12(5)2022 May 07.
Article in English | MEDLINE | ID: mdl-35629924

ABSTRACT

The enteroendocrine system of the gut regulates energy homeostasis through the release of hormones. Of the gut-derived hormones, GLP-1 is particularly interesting, as analogs of the hormone have proven to be highly effective for the treatment of type 2 diabetes mellitus and obesity. Observations on increased levels of GLP-1 following gastric bypass surgery have enhanced the interest in endogenous hormone secretion and highlighted the potential of endogenous secretion in therapy. The macronutrients and their digestive products stimulate the secretion of GLP-1 through various mechanisms that we have only begun to understand. From findings obtained from different experimental models, we now have strong indications for a role for both Sodium-Glucose Transporter 1 (SGLT1) and the K+ATP channel in carbohydrate-induced GLP-1 secretion. For fat, the free fatty acid receptor FFA1 and the G-protein-coupled receptor GPR119 have been linked to GLP-1 secretion. For proteins, Peptide Transporter 1 (Pept1) and the Calcium-Sensing Receptor (CaSR) are thought to mediate the secretion. However, attempts at clinical application of these mechanisms have been unsuccessful, and more work is needed before we fully understand the mechanisms of nutrient-induced GLP-1 secretion.

3.
Am J Physiol Endocrinol Metab ; 320(5): E874-E885, 2021 05 01.
Article in English | MEDLINE | ID: mdl-33645250

ABSTRACT

The aim of this study was to explore individual amino acid-stimulated GLP-1 responses and the underlying stimulatory mechanisms, as well as to identify the amino acid-sensing receptors involved in amino acid-stimulated GLP-1 release. Experiments were primarily based on isolated perfused rat small intestines, which have intact epithelial polarization allowing discrimination between luminal and basolateral mechanisms as well as quantitative studies of intestinal absorption and hormone secretion. Expression analysis of amino acid sensors on isolated murine GLP-1 secreting L-cells was assessed by qPCR. We found that l-valine powerfully stimulated GLP-1 secretion but only from the luminal side (2.9-fold increase). When administered from the vascular side, l-arginine and the aromatic amino acids stimulated GLP-1 secretion equally (2.6- to 2.9-fold increases). Expression analysis revealed that Casr expression was enriched in murine GLP-1 secreting L-cells, whereas Gpr35, Gprc6a, Gpr142, Gpr93 (Lpar5), and the umami taste receptor subunits Tas1r3 and Tas1r1 were not. Consistently, activation of GPR35, GPR93, GPR142, and the umami taste receptor with specific agonists or allosteric modulators did not increase GLP-1 secretion (P > 0.05 for all experiments), whereas vascular inhibition of CaSR reduced GLP-1 secretion in response to luminal infusion of mixed amino acids. In conclusion, amino acids differ in their capacity to stimulate GLP-1 secretion. Some amino acids stimulated secretion only from the intestinal lumen, whereas other amino acids exclusively stimulated secretion from the vascular side, indicating that amino acid-stimulated GLP-1 secretion involves both apical and basolateral (postabsorptive) sensing mechanisms. Sensing of absorbed amino acids involves CaSR activation as vascular inhibition of CaSR markedly diminished amino acid stimulated GLP-1 release.NEW & NOTEWORTHY Using isolated perfused rat small intestines, we show that amino acids differ in their mechanisms and capacity of stimulating GLP-1 release. Furthermore, we demonstrate that sensing by GPR142, GPR35, GPR93, and the umami taste receptor (Tas1R1/Tas1R3) are not involved in amino acid stimulated GLP-1 release. In contrast to previous studies, this experimental model allows discrimination between the luminal and the vascular side of the intestine, which is essential when studying mechanisms of amino acid-stimulated GLP-1 secretion.


Subject(s)
Amino Acids/pharmacology , Glucagon-Like Peptide 1/metabolism , Intestine, Small/drug effects , Animals , Intestine, Small/metabolism , Intestine, Small/pathology , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Perfusion , Rats , Rats, Wistar , Receptors, G-Protein-Coupled/agonists , Receptors, G-Protein-Coupled/metabolism , Receptors, Lysophosphatidic Acid/agonists , Receptors, Lysophosphatidic Acid/metabolism , Secretory Pathway/drug effects , Signal Transduction/drug effects
4.
Cell Metab ; 29(3): 719-726.e5, 2019 03 05.
Article in English | MEDLINE | ID: mdl-30449683

ABSTRACT

Studies on isolated pancreatic islets suggest that neuromedin U (NMU), a brain and gastrointestinal peptide, acts as a decretin hormone, inhibiting glucose-stimulated insulin secretion. We investigated whether this effect could be reproduced in vivo and in isolated perfused rat pancreas. Unlike the incretin hormone, glucagon-like peptide 1 (GLP-1), intravenous NMU administration had no effects on blood glucose and plasma insulin and glucagon in vivo. Moreover, NMU neither changed insulin, glucagon, or somatostatin secretion from isolated perfused rat pancreas, nor affected GLP-1-stimulated insulin and somatostatin secretion. For NMU to act as a decretin hormone, its secretion should increase following glucose ingestion; however, glucose did not affect NMU secretion from isolated perfused rat small intestine, which contained extractable NMU. Furthermore, the two NMU receptors were not detected in endocrine rat or human pancreas. We conclude that NMU does not act as a decretin hormone in rats.


Subject(s)
Glucagon/metabolism , Insulin/metabolism , Intestine, Small/metabolism , Islets of Langerhans/metabolism , Neuropeptides , Pancreas/metabolism , Somatostatin/metabolism , Animals , COS Cells , Chlorocebus aethiops , Humans , Male , Neuropeptides/pharmacology , Neuropeptides/physiology , Rats , Rats, Wistar , Receptors, Neurotransmitter/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL