Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters








Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-38982696

ABSTRACT

Lymphoma is a malignant tumor caused by abnormal proliferation of lymphocytes in the lymphatic system. Conventional treatments for lymphoma often have limitations, and new therapeutic strategies need to be explored. Realgar is an ancient Chinese medicine that has been used for centuries to treat a variety of ailments due to its therapeutic potential for various diseases, including cancer. However, it is a time-consuming waste and has a low absorption rate in the gastrointestinal tract, so it has the disadvantages of oral dose, potential toxicity, and low bioavailability. Recently, the development of nanotechnology has promoted the nanization of realgar particles, which have better physicochemical properties and higher bioavailability. The antitumor activity of Realgar nanoparticles against lymphoma has been demonstrated in preclinical studies. Realgar nanoparticles exhibit cytotoxic effects by inducing apoptosis and inhibiting the growth and proliferation of lymphoma cells. Moreover, these nanoparticles exert immunomodulatory effects by enhancing the activity of immune cells and promoting the cytotoxicity of T lymphocytes against lymphoma cells. Additionally, realgar nanoparticles have been shown to inhibit tumor angiogenesis, thereby restricting the blood supply and nutrient availability to lymphoma cells. Despite promising preclinical data, further research on the role and mechanism of realgar nanoparticles in the treatment of lymphoma remains to be studied. Moreover, the translation of these findings into clinical practice requires rigorous evaluation through well-designed clinical trials. Realgar nanoparticles hold great potential as a novel therapeutic approach for lymphoma, and their development may contribute to the advancement of precision medicine in the field of oncology.

2.
Sci Rep ; 14(1): 5160, 2024 Mar 02.
Article in English | MEDLINE | ID: mdl-38431656

ABSTRACT

Deposition of high entropy alloy FeCoNiMnCu on SS-304 was carried out by microwave energy for application in "solid oxide fuel-cell (SOFC) interconnects". The ball-milling has been performed by taking "Fe, Co, Ni, Mn, and Cu" in equal 20 wt. % of before deposited on SS-304 substrate. The deposited steel with 20% Fe 20% Co 20% Ni 20% Mn 20% Cu high entropy alloy (HEA) was exposed to thermal-exposure in the air for up to 10 weeks at 800 °C. The uniform cladding distribution of 20% Fe 20% Co 20% Ni 20% Mn 20% Cu HEA particles can be apparently observed on SS-304 substrate by utilizing Scanning Electron Microscope (SEM), and Optical microscopy analysis. Homogeneity in the interfacial layer was evident by employing Scanning Electron Microscope (SEM) characterization. Results have indicated that after the thermal exposure of deposited steel with 20% Fe 20% Co 20% Ni 20% Mn 20% Cu in the air for up to ten weeks at 800 °C, a "protective Cr2O3 layer", and "high-entropy spinel coating" of (Fe, Co, Ni, Mn, Cu)3O4 have been formed. During microwave cladding, the emergence of harder-phases has contributed to the raised hardness. The wear behavior after coating of 20% Fe 20% Co 20% Ni 20% Mn 20% Cu HEA on SS-304 substrate has significantly enhanced due to the strengthened wear resistance and hardness of the coatings. Findings have exhibited that the formation of (Fe, Co, Ni, Mn, Cu)3O4 phase is a potential coating material for "SOFC interconnects" applications. Moreover, the cladding of SS304 with a composition of 20% Fe, 20% Co, 20% Ni, 20% Mn, and 20% Cu has demonstrated remarkable stability under thermal expansion studies. As the findings have revealed that the composite cladding has efficiently withstand significant variations in volume when subjected to elevated temperatures for a prolonged period of time, thus, exhibiting its superior thermal stability for SOFC-interconnect applications. Furthermore, the SEM images of the cladding surface, surface hardness, and tribocorrosion behavior of the coated material have been observed to identify the 20% Fe 20% Co 20% Ni 20% Mn 20% Cu HEA coating effect on SS-304 steel-substrate.

3.
Materials (Basel) ; 15(22)2022 Nov 16.
Article in English | MEDLINE | ID: mdl-36431608

ABSTRACT

Complex structures can now be manufactured easily utilizing AM technologies to meet the pre-requisite objectives such as reduced part numbers, greater functionality, and lightweight, among others. Polymers, metals, and ceramics are the few materials that can be used in AM technology, but metallic materials (Magnesium and Aluminum) are attracting more attention from the research and industrial point of view. Understanding the role processing parameters of laser-based additive manufacturing is critical to maximize the usage of material in forming the product geometry. LPBF (Laser powder-based fusion) method is regarded as a potent and effective additive manufacturing technique for creating intricate 3D forms/parts with high levels of precision and reproducibility together with acceptable metallurgical characteristics. While dealing with LBPF, some degree of porosity is acceptable because it is unavoidable; hot ripping and cracking must be avoided, though. The necessary manufacturing of pre-alloyed powder and ductility remains to be the primary concern while dealing with a laser-based additive manufacturing approach. The presence of the Al-Si eutectic phase in AlSi10Mg and AlSi12 alloy attributing to excellent castability and low shrinkage, attaining the most attention in the laser-based approach. Related studies with these alloys along with precipitation hardening and heat treatment processing were discussed. The Pure Mg, Mg-Al alloy, Mg-RE alloy, and Mg-Zn alloy along with the mechanical characteristics, electrochemical durability, and biocompatibility of Mg-based material have been elaborated in the work-study. The review article also summarizes the processing parameters of the additive manufacturing powder-based approach relating to different Mg-based alloys. For future aspects, the optimization of processing parameters, composition of the alloy, and quality of powder material used will significantly improve the ductility of additively manufactured Mg alloy by the LPBF approach. Other than that, the recycling of Mg-alloy powder hasn't been investigated yet. Meanwhile, the post-processing approach, including a homogeneous coating on the porous scaffolds, will mark the suitability in terms of future advancements in Mg and Al-based alloys.

4.
Materials (Basel) ; 15(17)2022 Sep 02.
Article in English | MEDLINE | ID: mdl-36079492

ABSTRACT

This review article focuses on the aluminum-based metal matrix composites (Al-based MMCs). Studies or investigations of their mechanical and tribological properties performed by researchers worldwide in the past are presented in detail. The processing techniques and applications for Al-based MMCs are also documented here. A brief background on the composite materials, their constituents, and their classification, as well as the different matrix materials and particulates used in Al-based MMCs, can be found in this review. Then, an overview of dual-particle-size reinforced composites, heat treatment of Al alloys, and temper designations used in heat treatment are also included. In addition, the factors influencing the mechanical and wear properties of Al-based MMCs are discussed. The primary objective is that both present and future researchers and investigators will be assisted by the comprehensive knowledge compiled in this article to further explore and work towards the betterment of society in general.

5.
Materials (Basel) ; 15(18)2022 Sep 08.
Article in English | MEDLINE | ID: mdl-36143552

ABSTRACT

The global energy situation requires the efficient use of resources and the development of new materials and processes for meeting current energy demand. Traditional materials have been explored to large extent for use in energy saving and storage devices. Graphene, being a path-breaking discovery of the present era, has become one of the most-researched materials due to its fascinating properties, such as high tensile strength, half-integer quantum Hall effect and excellent electrical/thermal conductivity. This paper presents an in-depth review on the exploration of deploying diverse derivatives and morphologies of graphene in various energy-saving and environmentally friendly applications. Use of graphene in lubricants has resulted in improvements to anti-wear characteristics and reduced frictional losses. This comprehensive survey facilitates the researchers in selecting the appropriate graphene derivative(s) and their compatibility with various materials to fabricate high-performance composites for usage in solar cells, fuel cells, supercapacitor applications, rechargeable batteries and automotive sectors.

SELECTION OF CITATIONS
SEARCH DETAIL