Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters








Database
Language
Publication year range
1.
Sci Rep ; 14(1): 15586, 2024 Jul 06.
Article in English | MEDLINE | ID: mdl-38971845

ABSTRACT

The global concern over heavy metal pollution necessitates urgent measures to safeguard human health and the environment. This study focuses on employing triethylenetetramine (TETA)-functionalized MIP-206-OH (TMIP-206) as an effective adsorbent for removing Pb(II) from wastewater. TMIP-206 was synthesized via a hydrothermal method followed by functionalization with TETA. Kinetic studies demonstrate that lead removal on TMIP-206 conforms to the pseudo-second-order model, indicating an efficient removal process. Experimental results reveal that TMIP-206 aligns with the Langmuir isotherm, exhibiting a maximum removal capacity of 267.15 mg/g for lead ions. The sorption efficiency of TMIP-206 for Pb ions remains stable across six cycles, with a reduction of less than 15%. Optimal adsorption performance is observed at a pH of 6. These findings underscore the potential of TMIP-206 as an alternative for adsorbing Pb(II) from aqueous environments, addressing the global challenge of heavy metal pollution. Future research should explore the scalability and long-term stability of TMIP-206-based adsorbents to enhance their practical applicability in diverse environmental contexts and contribute to broader strategies for mitigating heavy metal contamination.

2.
Heliyon ; 10(12): e32208, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38984300

ABSTRACT

In photovoltaic systems, only a tiny portion of solar radiation reaches the module's surface and is converted to electrical energy. The remaining solar radiation is wasted, which raises cell temperature and reduces electrical efficiency. This research focused on examining the effects of different factors on nanofluids. In the simulations performed in this thesis, the inlet temperature of the water fluid changes from 5 °C to 30 °C. The radiation intensity equals 600 W per square meter, and the input speed is 0.07452 m per second. The innovation of this article is the use of two nanofluids of aluminum oxide and copper together with a mixture of water to investigate the effect of effective parameters on the electrical, thermal, and overall efficiency of photovoltaic systems, such as the amount of incoming radiation to the surface of the panel, the temperature of the fluid inlet in mountainous areas, the temperature of the absorber. , so that the thermal efficiency of copper and aluminum oxide is investigated and compared. As a result, copper nanofluid can increase the ratio more than aluminum oxide and pure water. There is a direct relationship between the output fluid temperature and the input temperature. With an increase in the input fluid temperature, the output temperature also increases proportionally. Increasing the inlet temperature affects the temperature of the absorber surface, which, in turn, reduces the electrical efficiency of the photovoltaic system. These changes are reduced by adding nanofluids to the photovoltaic system.Although the increase of nanoparticles causes a decrease in the temperature of the absorber plate, and this temperature decrease for copper nanofluid is 10 % higher than that of aluminum oxide and pure water until the volume fraction is reached.

3.
Phys Chem Chem Phys ; 26(12): 9284-9294, 2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38469699

ABSTRACT

Sulfur hosts and conversion catalysts based on NiCo-LDHs exhibit potential for improving the performance of Li-S batteries. Nevertheless, their low electron conductivity and aggregation propensity restrict their applicability. This investigation employs a temporary scaffold of ZIF-67 to produce a nanotube assembly of Ni-Co-LDH encapsulated within an N-doped graphene sponge. The electrochemically developed interface has an extended active surface area, and the clumping of LDH nanosheets is effectively inhibited by the design of the nanotube arrangement. Furthermore, the incorporation of nitrogen within the structure of graphene results in a boost of electrical conductivity and provides an increased quantity of active sites. Interfacial electron transport is facilitated by the interfacial rearrangement of charges resulting from p-n heterojunctions and fosters redox activity. In this study, the researchers have presented the double role played by the nickel-cobalt layered double hydroxide (NiCo-LDH) nanotubes in improving the polysulphide (LiPS) conversion and decreasing the movement of the sulphur (S) ions by forming surface-bound intermediates. The battery that was fabricated using the above composite cathode mixture showed a higher energy storage ability, i.e., 1190.0 mA h g-1 at J = 0.2. Furthermore, the battery showed a significantly higher capacity to rapidly supply energy and displayed a rate capacity of 670.1 mA h g-1 at J = 5C. Also, the above battery displayed a longer cycle life, with 1000 charge-discharge cycles and the deterioration rate of 0.029% for each cycle.

SELECTION OF CITATIONS
SEARCH DETAIL