Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 73
Filter
Add more filters








Publication year range
3.
Proc Natl Acad Sci U S A ; 98(10): 5446-51, 2001 May 08.
Article in English | MEDLINE | ID: mdl-11344292

ABSTRACT

Since the Age of Exploration began, there has been a drastic breaching of biogeographic barriers that previously had isolated the continental biotas for millions of years. We explore the nature of these recent biotic exchanges and their consequences on evolutionary processes. The direct evidence of evolutionary consequences of the biotic rearrangements is of variable quality, but the results of trajectories are becoming clear as the number of studies increases. There are examples of invasive species altering the evolutionary pathway of native species by competitive exclusion, niche displacement, hybridization, introgression, predation, and ultimately extinction. Invaders themselves evolve in response to their interactions with natives, as well as in response to the new abiotic environment. Flexibility in behavior, and mutualistic interactions, can aid in the success of invaders in their new environment.


Subject(s)
Biological Evolution , Animals , Geography , Hybridization, Genetic , Species Specificity
4.
Science ; 287(5459): 1770-4, 2000 Mar 10.
Article in English | MEDLINE | ID: mdl-10710299

ABSTRACT

Scenarios of changes in biodiversity for the year 2100 can now be developed based on scenarios of changes in atmospheric carbon dioxide, climate, vegetation, and land use and the known sensitivity of biodiversity to these changes. This study identified a ranking of the importance of drivers of change, a ranking of the biomes with respect to expected changes, and the major sources of uncertainties. For terrestrial ecosystems, land-use change probably will have the largest effect, followed by climate change, nitrogen deposition, biotic exchange, and elevated carbon dioxide concentration. For freshwater ecosystems, biotic exchange is much more important. Mediterranean climate and grassland ecosystems likely will experience the greatest proportional change in biodiversity because of the substantial influence of all drivers of biodiversity change. Northern temperate ecosystems are estimated to experience the least biodiversity change because major land-use change has already occurred. Plausible changes in biodiversity in other biomes depend on interactions among the causes of biodiversity change. These interactions represent one of the largest uncertainties in projections of future biodiversity change.


Subject(s)
Ecosystem , Agriculture , Animals , Atmosphere , Carbon Dioxide , Climate , Fresh Water , Models, Biological , Nitrogen
5.
Oecologia ; 113(4): 537-546, 1998 Feb.
Article in English | MEDLINE | ID: mdl-28308034

ABSTRACT

The need to combine data from CO2 field experiments with climate data remains urgent, particularly because each CO2 experiment cannot run for decades to centuries. Furthermore, predictions for a given biome need to take into account differences in productivity and leaf area index (LAI) independent of CO2-derived changes. In this study, we use long-term weather records and field data from the Jasper Ridge CO2 experiment in Palo Alto, California, to model the effects of CO2 and climate variability on ecosystem water fluxes. The sandstone and serpentine grasslands at Jasper Ridge provide a range of primary productivity and LAI, with the sandstone as the more productive system. Modeled soil water availability agreed well with published observations of time-domain reflectometry in the CO2 experiment. Simulated water fluxes based on 10-year weather data (January 1985-December 1994) showed that the sandstone grassland had a much greater proportion of water movement through plants than did the serpentine; transpiration accounted for approximately 30% of annual fluxes in the sandstone and only 10% in the serpentine. Although simulated physiological and biomass changes were similar in both grasslands, the consequences of elevated CO2 were greater for the sandstone water budget. Elevated CO2 increased soil drainage by 20% in the sandstone, despite an approximately one-fifth increase in plant biomass; in the serpentine, drainage increased by <10% and soil evaporation was unchanged for the same simulated biomass change. Phenological changes, simulated by a 15-day lengthening of the growing season, had minimal impacts on the water budget. Annual variation in the timing and amount of rainfall was important for water fluxes in both grasslands. Elevated CO2 increased sandstone drainage >50 mm in seven of ten years, but the relative increase in drainage varied from 10% to 300% depending on the year. Early-season transpiration in the sandstone decreased between 26% and 41%, with elevated CO2 resulting in a simulated water savings of 54-76 mm. Even in years when precipitation was similar (e.g., 505 and 479 mm in years 3 and 4), the effect of CO2 varied dramatically. The response of grassland water budgets to CO2 depends on the productivity and structure of the grassland, the amount and timing of rainfall, and CO2-induced changes in physiology. In systems with low LAI, large physiological changes may not necessarily alter total ecosystem water budgets dramatically.

6.
Oecologia ; 115(4): 460-462, 1998 Jul.
Article in English | MEDLINE | ID: mdl-28308264

ABSTRACT

Downward transport of water in roots, in the following termed "inverse hydraulic lift," has previously been shown with heat flux techniques. But water flow into deeper soil layers was demonstrated in this study for the first time when investigating several perennial grass species of the Kalahari Desert under field conditions. Deuterium labelling was used to show that water acquired by roots from moist sand in the upper profile was transported through the root system to roots deeper in the profile and released into the dry sand at these depths. Inverse hydraulic lift may serve as an important mechanism to facilitate root growth through the dry soil layers underlaying the upper profile where precipitation penetrates. This may allow roots to reach deep sources of moisture in water-limited ecosystems such as the Kalahari Desert.

7.
Proc Natl Acad Sci U S A ; 94(14): 7362-6, 1997 Jul 08.
Article in English | MEDLINE | ID: mdl-11038557

ABSTRACT

Global biogeochemical models have improved dramatically in the last decade in their representation of the biosphere. Although leaf area data are an important input to such models and are readily available globally, global root distributions for modeling water and nutrient uptake and carbon cycling have not been available. This analysis provides global distributions for fine root biomass, length, and surface area with depth in the soil, and global estimates of nutrient pools in fine roots. Calculated root surface area is almost always greater than leaf area, more than an order of magnitude so in grasslands. The average C:N:P ratio in living fine roots is 450:11:1, and global fine root carbon is more than 5% of all carbon contained in the atmosphere. Assuming conservatively that fine roots turn over once per year, they represent 33% of global annual net primary productivity.

8.
Oecologia ; 108(4): 583-595, 1996 Dec.
Article in English | MEDLINE | ID: mdl-28307789

ABSTRACT

The depth at which plants are able to grow roots has important implications for the whole ecosystem hydrological balance, as well as for carbon and nutrient cycling. Here we summarize what we know about the maximum rooting depth of species belonging to the major terrestrial biomes. We found 290 observations of maximum rooting depth in the literature which covered 253 woody and herbaceous species. Maximum rooting depth ranged from 0.3 m for some tundra species to 68 m for Boscia albitrunca in the central Kalahari; 194 species had roots at least 2 m deep, 50 species had roots at a depth of 5 m or more, and 22 species had roots as deep as 10 m or more. The average for the globe was 4.6±0.5 m. Maximum rooting depth by biome was 2.0±0.3 m for boreal forest. 2.1±0.2 m for cropland, 9.5±2.4 m for desert, 5.2±0.8 m for sclerophyllous shrubland and forest, 3.9±0.4 m for temperate coniferous forest, 2.9±0.2 m for temperate deciduous forest, 2.6±0.2 m for temperate grassland, 3.7±0.5 m for tropical deciduous forest, 7.3±2.8 m for tropical evergreen forest, 15.0±5.4 m for tropical grassland/savanna, and 0.5±0.1 m for tundra. Grouping all the species across biomes (except croplands) by three basic functional groups: trees, shrubs, and herbaceous plants, the maximum rooting depth was 7.0±1.2 m for trees, 5.1±0.8 m for shrubs, and 2.6±0.1 m for herbaceous plants. These data show that deep root habits are quite common in woody and herbaceous species across most of the terrestrial biomes, far deeper than the traditional view has held up to now. This finding has important implications for a better understanding of ecosystem function and its application in developing ecosystem models.

9.
Oecologia ; 108(3): 389-411, 1996 Nov.
Article in English | MEDLINE | ID: mdl-28307854

ABSTRACT

Understanding and predicting ecosystem functioning (e.g., carbon and water fluxes) and the role of soils in carbon storage requires an accurate assessment of plant rooting distributions. Here, in a comprehensive literature synthesis, we analyze rooting patterns for terrestrial biomes and compare distributions for various plant functional groups. We compiled a database of 250 root studies, subdividing suitable results into 11 biomes, and fitted the depth coefficient ß to the data for each biome (Gale and Grigal 1987). ß is a simple numerical index of rooting distribution based on the asymptotic equation Y=1-ßd, where d = depth and Y = the proportion of roots from the surface to depth d. High values of ß correspond to a greater proportion of roots with depth. Tundra, boreal forest, and temperate grasslands showed the shallowest rooting profiles (ß=0.913, 0.943, and 0.943, respectively), with 80-90% of roots in the top 30 cm of soil; deserts and temperate coniferous forests showed the deepest profiles (ß=0.975 and 0.976, respectively) and had only 50% of their roots in the upper 30 cm. Standing root biomass varied by over an order of magnitude across biomes, from approximately 0.2 to 5 kg m-2. Tropical evergreen forests had the highest root biomass (5 kg m-2), but other forest biomes and sclerophyllous shrublands were of similar magnitude. Root biomass for croplands, deserts, tundra and grasslands was below 1.5 kg m-2. Root/shoot (R/S) ratios were highest for tundra, grasslands, and cold deserts (ranging from 4 to 7); forest ecosystems and croplands had the lowest R/S ratios (approximately 0.1 to 0.5). Comparing data across biomes for plant functional groups, grasses had 44% of their roots in the top 10 cm of soil. (ß=0.952), while shrubs had only 21% in the same depth increment (ß=0.978). The rooting distribution of all temperate and tropical trees was ß=0.970 with 26% of roots in the top 10 cm and 60% in the top 30 cm. Overall, the globally averaged root distribution for all ecosystems was ß=0.966 (r 2=0.89) with approximately 30%, 50%, and 75% of roots in the top 10 cm, 20 cm, and 40 cm, respectively. We discuss the merits and possible shortcomings of our analysis in the context of root biomass and root functioning.

10.
Oecologia ; 108(3): 503-511, 1996 Nov.
Article in English | MEDLINE | ID: mdl-28307867

ABSTRACT

Above-and belowground biomass distribution, isotopic composition of soil and xylem water, and carbon isotope ratios were studied along an aridity gradient in Patagonia (44-45°S). Sites, ranging from those with Nothofagus forest with high annual rainfall (770 mm) to Nothofagus scrub (520 mm), Festuca (290 mm) and Stipa (160 mm) grasslands and into desert vegetation (125 mm), were chosen to test whether rooting depth compensates for low rainfall. Along this gradient, both mean above-and belowground biomass and leaf area index decreased, but average carbon isotope ratios of sun leaves remained constant (at-27‰), indicating no major differences in the ratio of assimilation to stomatal conductance at the time of leaf growth. The depth of the soil horizon that contained 90% of the root biomass was similar for forests and grasslands (about 0.80-0.50 m), but was shallower in the desert (0.30 m). In all habitats, roots reached water-saturated soils or ground water at 2-3 m depth. The depth profile of oxygen and hydrogen isotope ratios of soil water corresponded inversely to volumetric soil water contents and showed distinct patterns throughout the soil profile due to evaporation, water uptake and rainfall events of the past year. The isotope ratios of soil water indicated that high soil moisture at 2-3 m soil depth had originated from rainy periods earlier in the season or even from past rainy seasons. Hydrogen and oxygen isotope ratios of xylem water revealed that all plants used water from recent rain events in the topsoil and not from water-saturated soils at greater depth. However, this study cannot explain the vegetation zonation along the transect on the basis of water supply to the existing plant cover. Although water was accessible to roots in deeper soil layers in all habitats, as demonstrated by high soil moisture, earlier rain events were not fully utilized by the current plant cover during summer drought. The role of seedling establishment in determining species composition and vegetation type, and the indirect effect of seedling establishment on the use of water by fully developed plant cover, are discussed in relation to climate change and vegetation modelling.

11.
Oecologia ; 104(1): 17-23, 1995 Sep.
Article in English | MEDLINE | ID: mdl-28306908

ABSTRACT

Growth, photosynthesis, and storage of nitrogen (N) and total non-structural carbohydrates (TNC) of a perennial wild type and an annual cultivar of lima bean (Phaseolus lunatus) were examined at different light intensities and N supplies. Relative growth rate and photosynthesis increased with light and N availability. N limitation enhanced biomass allocation into root rather than into shoot, while light limitation enhanced growth of leaf area. The TNC concentrations increased with light intensity and thus with photosynthesis, while the concentrations of organic N and nitrate decreased. Increasing N supply had the opposite effect. Therefore, TNC and organic N concentrations were negatively correlated (r=-0.90). Pool size of N or TNC increased with N and light availability when either resource was non-limiting, but increased little or remained constant when either resource was limiting. Storage reached a minimum when both resources were supplied at an equal rate.

12.
Trends Ecol Evol ; 9(10): 371-2, 1994 Oct.
Article in English | MEDLINE | ID: mdl-21236895
13.
Oecologia ; 98(3-4): 257-262, 1994 Aug.
Article in English | MEDLINE | ID: mdl-28313900

ABSTRACT

Global atmospheric CO2 is increasing at a rate of 1.5-2 ppm per year and is predicted to double by the end of the next century. Understanding how terrestrial ecosystems will respond in this changing environment is an important goal of current research. Here we present results from a field study of elevated CO2 in a California annual grassland. Elevated CO2 led to lower leaf-level stomatal conductance and transpiration (approximately 50%) and higher mid-day leaf water potentials (30-35%) in the most abundant species of the grassland, Avena barbata Brot. Higher CO2 concentrations also resulted in greater midday photosynthetic rates (70% on average). The effects of CO2 on stomatal conductance and leaf water potential decreased towards the end of the growing season, when Avena began to show signs of senescence. Water-use efficiency was approximately doubled in elevated CO2, as estimated by instantaneous gas-exchange measurements and seasonal carbon isotope discrimination. Increases in CO2 and photosynthesis resulted in more seeds per plant (30%) and taller and heavier plants (27% and 41%, respectively). Elevated CO2 also reduced seed N concentrations (9%).

14.
Trends Ecol Evol ; 7(4): 107-8, 1992 Apr.
Article in English | MEDLINE | ID: mdl-21235972
15.
Ecol Appl ; 1(2): 112-117, 1991 May.
Article in English | MEDLINE | ID: mdl-27755666

ABSTRACT

Our knowledge of the structure and functioning of terrestrial ecosystems on a global scale is not developed to a sufficient degree to understand-much less predict-the consequences of climate change either on the systems themselves or on subsequent atmospheric interactions. In many regards we have lagged behind the atmospheric scientists, and to a certain degree the oceanographers, in establishing a global understanding of the dynamics of our respective systems. This is due in part to the inherently greater complexity of biotic systems, but also to the lack of appropriate tools to measure regional biotic processes. These tools are now becoming available and with them a better understanding of terrestrial and atmospheric interactions. Even as these capabilities become a reality we must be realistic in recognizing that we have so far to go along the road to understanding that useful predictive capacity may elude us for a long time to come. What we need to do is act on the recommendations that have been emerging over the past few years and develop a global program to document more precisely the distribution, structure, and quantity of the earth's biotic systems, their principal functional properties, and-most difficult of all-their changing nature. In order to do this we will have to: (1) perfect some of the emerging new tools for assessing these properties, (2) fill some of the gaps in our knowledge about the relevant processes, and (3) establish an international network of long-term observations and large-scale ecosystem manipulations. We have been aware of these needs and shortcomings for some time and we must move from plans to concerted international action.

16.
Ecol Appl ; 1(1): 2-5, 1991 Feb.
Article in English | MEDLINE | ID: mdl-27755685

ABSTRACT

The emergence of the study of how the earth system operates and is responding to global change has seen the development of large-scale cross-disciplinary research efforts in addition to progress in traditional single-discipline, single-investigator approaches. Although terrestrial (I use this word in the broad sense to include continental systems encompassing terrestrial, wetland, lake, and river ecosystems) ecology is a central area of research for understanding earth system functioning, this field has not engaged in, nor has it the mechanisms for, strategic research planning, and thus it has not provided the momentum apparent in the allied earth sciences. The development and execution of the International Geosphere-Biosphere Program provides one forum for more integrated research planning by ecologists, as well as research opportunities along the entire spectrum of concern of this discipline. However, there needs to be a national focal point for continuing strategic planning for research in terrestrial ecology.

17.
Trends Ecol Evol ; 6(7): 203-4, 1991 Jul.
Article in English | MEDLINE | ID: mdl-21232458
18.
New Phytol ; 115(3): 439-446, 1990 Jul.
Article in English | MEDLINE | ID: mdl-33874284

ABSTRACT

Experiments were conducted to determine the impact of nitrogen and ozone (O3 ) stress on the growth of domestic radish Raphanus sativus L. cv. Cherry Belle. Plants were grown in field chambers with sub-, optimal and supra-optimal levels of nitrogenous fertilizer. Chamber air was either charcoal-filtered, or supplemented with one of two levels of O3 . The highest O3 treatment resulted in significant reduction in weight of hypocotyls and roots while elevated nitrogen treatments resulted in increased weight of all plant parts. Ozone did not affect the weight of plant foliage at any nitrogen level. Plants grown with lower levels of nitrogen had less leaf biomass but the tissue accounted for a greater percentage total weight than did the foliage of higher nitrogen treatments. Relative growth rate of whole plants was not affected by O3 or nitrogen treatments reflecting compensation in response to both stresses. Ozone-induced depression in biomass was observed in O3 -treated plants grown with higher nitrogen supply but not in those grown with limiting nitrogen. This observation could reflect compensation at the lower levels of nitrogen supply or inability to detect changes in biomass due to reduced weights of plants grown at the lowest nitrogen supply. The dry weight ratio of sink organs (hypocotyl plus root)/shoot was significantly correlated with the total non-structural carbohydrate (TNC) content of these organs, regardless of treatment. Initially, O3 induced a significant decrease and nitrogen an increase in percent TNC of sink organs. At later sampling times, plants adjusted to stress as effects on percent TNC were no longer evident.

19.
J Chem Ecol ; 15(4): 1117-31, 1989 Apr.
Article in English | MEDLINE | ID: mdl-24271998

ABSTRACT

Predictions of the carbon-nutrient balance hypothesis were tested using a study of within-species phytochemical variation in the arroyo willow,Salix lasiolepis. The prediction that a balance between nutrients (total protein) and carbon-based secondary metabolites (total phenols) should exist was supported using water treatment and fertilizer experiments and wild willow clones. Leaf nitrogen content and net photosynthetic rates of plants potted in soil in which parental plants grew was low, indicating that wild plants exist under relatively low nutrient status-high carbon balance conditions. The hypothesis also correctly predicted positive relationships between shoot length and phenols in glasshouse plants, wild plants, and plants in the water treatment experiment and negative relationships between shoot length and phenols in the fertilizer treatment experiment. Total phenolic glycosides, fragilin, picein, salicortin, tremulacin, and tremuloidin all correlated positively with shoot length in glasshouse plants on a carbon-biased balance, and male willows had generally lower levels of phenolic glycosides than females. Salicortin and tremulacin showed the strongest positive relationships with shoot length.

20.
Oecologia ; 79(4): 542-550, 1989 Jun.
Article in English | MEDLINE | ID: mdl-28313490

ABSTRACT

Two annual species of Bromus, an invader (B. hordeaceus, ex B. mollis) and a non-invader (B. intermedius), were grown for 28 days in growth chambers, at 5 and 100 µM NO 3- in flowing nutrient solution. No differences between the two species were observed at either NO 3- level, in terms of relative growth rate (RGR) or its components, dry matter partitioning, specific NO 3- absorption rate, nitrogen concentration, and other characteristics of NO 3- uptake and photosynthesis. The effects of decreasing NO 3- concentration in the solution were mainly to decrease the NO 3- concentration in the plants through decreased absorption rate, and to decrease the leaf area ratio through increased specific leaf mass and decreased leaf mass ratio. Organic nitrogen concentration varied little between the two treatments, which may be the reason why photosynthetic rates were not altered. Consequently, RGR was only slightly decreased in the 5-µM treatment compared to the 100-µM treatment. This is in contrast with other species, where growth is reduced at much higher NO 3- concentrations. These discrepancies may be related to differences in RGR, since a log-linear relationship was found between RGR and the NO 3- concentration at which growth is first reduced. In addition, a strong linear relationship was found between the RGR of these species and their maximum absorption rate for nitrate, suggesting that the growth of species with low maximum RGR may be partly regulated by nutrient uptake.

SELECTION OF CITATIONS
SEARCH DETAIL