Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters








Database
Language
Publication year range
1.
Front Neurosci ; 15: 678503, 2021.
Article in English | MEDLINE | ID: mdl-34248484

ABSTRACT

Growing research suggests that posttraumatic stress disorder (PTSD) may be a risk factor for poor cardiovascular health, and yet our understanding of who might be at greatest risk of adverse cardiovascular outcomes after trauma is limited. In this study, we conducted the first examination of the individual and synergistic contributions of PTSD symptoms and blood pressure genetics to continuous blood pressure levels. We harnessed the power of the Psychiatric Genomics Consortium-PTSD Physical Health Working Group and investigated these associations across 11 studies of 72,224 trauma-exposed individuals of European (n = 70,870) and African (n = 1,354) ancestry. Genetic contributions to blood pressure were modeled via polygenic scores (PGS) for systolic blood pressure (SBP) and diastolic blood pressure (DBP) that were derived from a prior trans-ethnic blood pressure genome-wide association study (GWAS). Results of trans-ethnic meta-analyses revealed significant main effects of the PGS on blood pressure levels [SBP: ß = 2.83, standard error (SE) = 0.06, p < 1E-20; DBP: ß = 1.32, SE = 0.04, p < 1E-20]. Significant main effects of PTSD symptoms were also detected for SBP and DBP in trans-ethnic meta-analyses, though there was significant heterogeneity in these results. When including data from the largest contributing study - United Kingdom Biobank - PTSD symptoms were negatively associated with SBP levels (ß = -1.46, SE = 0.44, p = 9.8E-4) and positively associated with DBP levels (ß = 0.70, SE = 0.26, p = 8.1E-3). However, when excluding the United Kingdom Biobank cohort in trans-ethnic meta-analyses, there was a nominally significant positive association between PTSD symptoms and SBP levels (ß = 2.81, SE = 1.13, p = 0.01); no significant association was observed for DBP (ß = 0.43, SE = 0.78, p = 0.58). Blood pressure PGS did not significantly moderate the associations between PTSD symptoms and blood pressure levels in meta-analyses. Additional research is needed to better understand the extent to which PTSD is associated with high blood pressure and how genetic as well as contextual factors may play a role in influencing cardiovascular risk.

2.
Psychiatry Res ; 196(2-3): 285-9, 2012 Apr 30.
Article in English | MEDLINE | ID: mdl-22382052

ABSTRACT

To test the importance of the dopamine D2 receptor (DRD2) region in nicotine dependence, 150 smokers and 228 controls were genotyped for the DRD2 C957T, -141delC and ANKK1 TaqIA polymorphisms (rs6277, rs1799732 and rs1800497, respectively). The -141delC SNP did not show any association but both the C957T and TaqIA SNPs showed association at the allele, genotype, haplotype and combined genotype levels. The 957C/TaqI A1 haplotype was more than 3.5 times as likely to be associated with nicotine dependence compared with the 957T/TaqI A1 haplotype (P=0.003). Analysis of the combined genotypes of both SNPs revealed that individuals who were homozygous for the 957C-allele (CC) and had either one or two copies of the TaqI A1-allele were 3.3 times as likely to have nicotine dependence compared to all other genotype combinations (P=0.0003) and that these genotypes accounted for approximately 13% of the susceptibility to nicotine addiction in our population. Our findings suggest that the DRD2 C957T polymorphism and the ANKK1 TaqIA polymorphism are key contributors to the genetic susceptibility to nicotine dependence.


Subject(s)
Genetic Predisposition to Disease , Polymorphism, Genetic , Protein Serine-Threonine Kinases/genetics , Receptors, Dopamine D2/genetics , Tobacco Use Disorder/genetics , Adult , Chi-Square Distribution , Female , Gene Frequency , Genotype , Humans , Male , Middle Aged , Young Adult
3.
Genet Test Mol Biomarkers ; 16(2): 77-81, 2012 Feb.
Article in English | MEDLINE | ID: mdl-21861710

ABSTRACT

BACKGROUND: Dopamine D2 receptor (DRD2) is thought to be critical in regulating the dopaminergic pathway in the brain, which is known to be important in the etiology of schizophrenia. It is, therefore, not surprising that most antipsychotic medication acts on DRD2. DRD2 is widely expressed in the brain; levels are reduced in the brains of patients with schizophrenia, and DRD2 polymorphisms have been associated with reduced brain expression. We have previously identified a genetic variant in DRD2, rs6277 to be strongly implicated in schizophrenia susceptibility. METHODS: To identity new associations in the DRD2 gene with disease status and clinical severity, we genotyped seven single-nucleotide polymorphisms (SNPs) in DRD2 by using a multiplex mass spectrometry method. SNPs were chosen by using a haplotype block-based gene-tagging approach; so, the entire DRD2 gene was represented. RESULTS: One polymorphism, rs2734839 was found to be significantly associated with schizophrenia as well as late onset age. Individuals carrying the genetic variation were more than twice as likely to have schizophrenia compared with controls. CONCLUSIONS: Our results suggest that DRD2 genetic variation is a good indicator for schizophrenia risk and may also be used as a predictor of age of onset.


Subject(s)
Age of Onset , Genetic Predisposition to Disease , Polymorphism, Single Nucleotide/genetics , Receptors, Dopamine D2/genetics , Schizophrenia/genetics , Adult , Female , Gene Frequency , HapMap Project , Haplotypes , Humans , Male , Middle Aged , Receptors, Dopamine D2/metabolism , Schizophrenia/physiopathology , Young Adult
4.
Curr Drug Discov Technol ; 5(3): 230-5, 2008 Sep.
Article in English | MEDLINE | ID: mdl-18690891

ABSTRACT

Single nucleotide polymorphisms (SNPs) are unique genetic differences between individuals that contribute in significant ways to the determination of human variation including physical characteristics like height and appearance as well as less obvious traits such as personality, behaviour and disease susceptibility. SNPs can also significantly influence responses to pharmacotherapy and whether drugs will produce adverse reactions. The development of new drugs can be made far cheaper and more rapid by selecting participants in drug trials based on their genetically determined response to drugs. Technology that can rapidly and inexpensively genotype thousands of samples for thousands of SNPs at a time is therefore in high demand. With the completion of the human genome project, about 12 million true SNPs have been identified to date. However, most have not yet been associated with disease susceptibility or drug response. Testing for the appropriate drug response SNPs in a patient requiring treatment would enable individualised therapy with the right drug and dose administered correctly the first time. Many pharmaceutical companies are also interested in identifying SNPs associated with polygenic traits so novel therapeutic targets can be discovered. This review focuses on technologies that can be used for genotyping known SNPs as well as for the discovery of novel SNPs associated with drug response.


Subject(s)
Drug Discovery , Genetic Testing/methods , Genomics/methods , Pharmacogenetics/methods , Polymorphism, Single Nucleotide , Genetic Predisposition to Disease , Genotype , Humans
5.
Nutrition ; 22(6): 672-8, 2006 Jun.
Article in English | MEDLINE | ID: mdl-16704955

ABSTRACT

OBJECTIVE: There is evidence from in vitro studies that fatty acids can inhibit glucose uptake in liver. However, it is uncertain whether this happens in vivo when the liver is exposed to high levels of glucose and insulin, in combination with fatty acids, after a mixed meal. This study determined the effects of a combination of fatty acids and insulin on glucokinase (GK) activity and glycolysis in primary rat hepatocytes. METHODS: Hepatocytes were cultured with 15 mM glucose and 2 or 10 nM insulin in combination with the fatty acids palmitate, oleate, linoleate, eicosapentaenoic acid, or docosahexaenoic acid. Total GK activity and the proportion of GK in the active, unbound state were measured to determine the effect of fatty acid on the activity and cellular localization of GK. Glucose phosphorylation and glycolysis were measured in intact cells. Lactate and pyruvate synthesis and the accumulation of ketone bodies were also estimated. RESULTS: Palmitate and eicosapentaenoic acid lowered total GK activity in the presence of 2 nM insulin, but not with 10 nM insulin. In contrast, oleate, linoleate, and docosahexaenoic acid did not alter GK activity. None of the fatty acids tested inhibited glucose phosphorylation or glycolysis in intact rat hepatocytes. In addition, GK activity was unaffected by insulin concentration. CONCLUSION: Some fatty acids can act to inhibit GK activity in primary hepatocytes. However, there was no evidence that this decrease in GK activity impaired glucose phosphorylation or glycolysis. Glucose and high concentrations of insulin, which promote glucose uptake, appear to counteract any inhibitory action of fatty acids. Therefore, the presence of fatty acids in a normal mixed meal is likely to have little effect on the capacity of the liver to take up, phosphorylate, and oxidize glucose.


Subject(s)
Fatty Acids/pharmacology , Glucokinase/metabolism , Glucose/pharmacokinetics , Glycolysis/drug effects , Hepatocytes/metabolism , Insulin/pharmacology , Phosphorylation/drug effects , Animals , Dose-Response Relationship, Drug , Glucose/metabolism , Liver/cytology , Liver/metabolism , Male , Rats , Rats, Wistar , Spectrophotometry
SELECTION OF CITATIONS
SEARCH DETAIL