Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 62
Filter
1.
Int J Mol Sci ; 25(17)2024 Aug 31.
Article in English | MEDLINE | ID: mdl-39273430

ABSTRACT

Recent epidemiological studies have shown that patients with right-sided breast cancer (RBC) treated with X-ray irradiation (IR) are more susceptible to developing cardiovascular diseases, such as arrhythmias, atrial fibrillation, and conduction disturbances after radiotherapy (RT). Our aim was to investigate the mechanisms induced by low to moderate doses of IR and to evaluate changes in the cardiac sympathetic nervous system (CSNS), atrial remodeling, and calcium homeostasis involved in cardiac rhythm. To mimic the RT of the RBC, female C57Bl/6J mice were exposed to X-ray doses ranging from 0.25 to 2 Gy targeting 40% of the top of the heart. At 60 weeks after RI, Doppler ultrasound showed a significant reduction in myocardial strain, ejection fraction, and atrial function, with a significant accumulation of fibrosis in the epicardial layer and apoptosis at 0.5 mGy. Calcium transient protein expression levels, such as RYR2, NAK, Kir2.1, and SERCA2a, increased in the atrium only at 0.5 Gy and 2 Gy at 24 h, and persisted over time. Interestingly, 3D imaging of the cleaned hearts showed an early reduction of CSNS spines and dendrites in the ventricles and a late reorientation of nerve fibers, combined with a decrease in SEMA3a expression levels. Our results showed that local heart IR from 0.25 Gy induced late cardiac and atrial dysfunction and fibrosis development. After IR, ventricular CSNS and calcium transient protein expression levels were rearranged, which affected cardiac contractility. The results are very promising in terms of identifying pro-arrhythmic mechanisms and preventing arrhythmias during RT treatment in patients with RBC.


Subject(s)
Calcium , Mice, Inbred C57BL , Sympathetic Nervous System , Animals , Mice , Sympathetic Nervous System/radiation effects , Sympathetic Nervous System/metabolism , Female , Calcium/metabolism , X-Rays , Heart/radiation effects , Heart/physiopathology , Atrial Remodeling/radiation effects
2.
Front Physiol ; 15: 1326663, 2024.
Article in English | MEDLINE | ID: mdl-38322613

ABSTRACT

Introduction: Sudden cardiac death (SCD) and ventricular fibrillation are rare but severe complications of many cardiovascular diseases and represent a major health issue worldwide. Although the primary causes are often acute or chronic coronary diseases, genetic conditions, such as inherited channelopathies or non-ischemic cardiomyopathies are leading causes of SCD among the young. However, relevant experimental models to study the underlying mechanisms of arrhythmias and develop new therapies are still needed. The number of genetically engineered mouse models with cardiac phenotype is growing, making electrophysiological studies in mice essential tools to study arrhythmogenicity and arrhythmia mechanisms and to test novel treatments. Recently, intracardiac catheterization via the jugular vein was described to induce and record ventricular arrhythmias in living anesthetized mice. Several strategies have been reported, developed in healthy wild-type animals and based on aggressive right ventricular stimulation. Methods: Here, we report a protocol based on programmed electrical stimulation (PES) performed in clinical practice in patients with cardiac rhythm disorders, adapted to two transgenic mice models of arrhythmia - Brugada syndrome and cardiolaminopathy. Results: We show that this progressive protocol, based on a limited number of right ventricular extrastimuli, enables to reveal different rhythmic phenotypes between control and diseased mice. In this study, we provide detailed information on PES in mice, including catheter positioning, stimulation protocols, intracardiac and surface ECG interpretation and we reveal a higher susceptibility of two mouse lines to experience triggered ventricular arrhythmias, when compared to control mice. Discussion: Overall, this technique allows to characterize arrhythmias and provides results in phenotyping 2 arrhythmogenic-disease murine models.

3.
FASEB J ; 38(1): e23291, 2024 01.
Article in English | MEDLINE | ID: mdl-38095283

ABSTRACT

Myocardial infarction (MI) is characterized by a significant loss of cardiomyocytes (CMs), and it is suggested that reactive oxygen species (ROS) are involved in cell cycle arrest, leading to impaired CM renewal. Thioredoxin-1 (Trx-1) scavenges ROS and may play a role in restoring CM renewal. However, the truncated form of Trx-1, Trx-80, can compromise its efficacy by exerting antagonistic effects. Therefore, a Trx-1 mimetic peptide called CB3 was tested as an alternative way to restore CMs. This study aimed to investigate the effects of Trx-1, Trx-80, and CB3 on mice with experimental MI and study the underlying mechanism of CB3 on CMs. Mouse cardiac parameters were quantified by echocardiography, and infarction size and fibrosis determined using Trichrome and Picro-Sirius Red staining. The study found that Trx-1 and CB3 improved mouse cardiac function, reduced the size of cardiac infarct and fibrosis, and decreased the expression of cardiac inflammatory markers. Furthermore, CB3 polarized macrophages into M2 phenotype, reduced apoptosis and oxidative stress after MI, and increased CM proliferation in cell culture and in vivo. CB3 effectively protected against myocardial infarction and could represent a new class of compounds for treating MI.


Subject(s)
Myocardial Infarction , Thioredoxins , Mice , Animals , Reactive Oxygen Species/metabolism , Thioredoxins/metabolism , Myocardial Infarction/metabolism , Myocytes, Cardiac/metabolism , Peptides/pharmacology , Peptides/therapeutic use , Peptides/metabolism , Apoptosis , Fibrosis , Ventricular Remodeling , Myocardium/metabolism , Disease Models, Animal
4.
Am J Physiol Lung Cell Mol Physiol ; 324(5): L609-L624, 2023 05 01.
Article in English | MEDLINE | ID: mdl-36852942

ABSTRACT

Hereditary pulmonary veno-occlusive disease (hPVOD) is a severe form of autosomal recessive pulmonary hypertension and is due to biallelic loss of function of the EIF2AK4 gene (alias GCN2) coding for GCN2. GCN2 is a stress kinase that belongs to the integrated stress response pathway (ISR). Three rat lines carrying biallelic Gcn2 mutation were generated and found phenotypically normal and did not spontaneously develop a PVOD-related disease. We submitted these rats to amino acid deprivation to document the molecular and cellular response of the lungs and to identify phenotypic changes that could be involved in PVOD pathophysiology. Gcn2-/- rat lungs were analyzed under basal conditions and 3 days after a single administration of PEG-asparaginase (ASNase). Lung mRNAs were analyzed by RNAseq and single-cell RNAseq (scRNA-seq), flow cytometry, tissue imaging, and Western blots. The ISR was not activated after ASNase treatment in Gcn2-/- rat lungs, and apoptosis was increased. Several proinflammatory and innate immunity genes were overexpressed, and inflammatory cells infiltration was also observed in the perivascular area. Under basal conditions, scRNA-seq analysis of Gcn2-/- rat lungs revealed increases in two T-cell populations, a LAG3+ T-cell population and a proliferative T-cell population. Following ASNase administration, we observed an increase in calprotectin expression involved in TLR pathway activation and neutrophil infiltration. In conclusion, under basal and asparagine and glutamine deprivation induced by asparaginase administration, Gcn2-/- rats display molecular and cellular signatures in the lungs that may indicate a role for Gcn2 in immune homeostasis and provide further clues to the mechanisms of hPVOD development.


Subject(s)
Hypertension, Pulmonary , Pulmonary Veno-Occlusive Disease , Animals , Rats , Lung/metabolism , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , Pulmonary Veno-Occlusive Disease/genetics , RNA, Messenger
5.
Nat Commun ; 13(1): 7886, 2022 12 22.
Article in English | MEDLINE | ID: mdl-36550158

ABSTRACT

Mutations in the lamin A/C gene (LMNA) cause dilated cardiomyopathy associated with increased activity of ERK1/2 in the heart. We recently showed that ERK1/2 phosphorylates cofilin-1 on threonine 25 (phospho(T25)-cofilin-1) that in turn disassembles the actin cytoskeleton. Here, we show that in muscle cells carrying a cardiomyopathy-causing LMNA mutation, phospho(T25)-cofilin-1 binds to myocardin-related transcription factor A (MRTF-A) in the cytoplasm, thus preventing the stimulation of serum response factor (SRF) in the nucleus. Inhibiting the MRTF-A/SRF axis leads to decreased α-tubulin acetylation by reducing the expression of ATAT1 gene encoding α-tubulin acetyltransferase 1. Hence, tubulin acetylation is decreased in cardiomyocytes derived from male patients with LMNA mutations and in heart and isolated cardiomyocytes from Lmnap.H222P/H222P male mice. In Atat1 knockout mice, deficient for acetylated α-tubulin, we observe left ventricular dilation and mislocalization of Connexin 43 (Cx43) in heart. Increasing α-tubulin acetylation levels in Lmnap.H222P/H222P mice with tubastatin A treatment restores the proper localization of Cx43 and improves cardiac function. In summary, we show for the first time an actin-microtubule cytoskeletal interplay mediated by cofilin-1 and MRTF-A/SRF, promoting the dilated cardiomyopathy caused by LMNA mutations. Our findings suggest that modulating α-tubulin acetylation levels is a feasible strategy for improving cardiac function.


Subject(s)
Cardiomyopathy, Dilated , Male , Mice , Animals , Cardiomyopathy, Dilated/metabolism , Actins/metabolism , Connexin 43/genetics , Tubulin/genetics , Serum Response Factor/genetics , Lamin Type A/genetics , Lamin Type A/metabolism , Microtubules/metabolism , Myocytes, Cardiac/metabolism , Mice, Knockout , Intermediate Filament Proteins/genetics , Mutation , Actin Depolymerizing Factors/genetics
6.
J Am Heart Assoc ; 11(7): e023021, 2022 04 05.
Article in English | MEDLINE | ID: mdl-35348002

ABSTRACT

Background Platelet-derived growth factor is a major regulator of the vascular remodeling associated with pulmonary arterial hypertension. We previously showed that protein widely 1 (PW1+) vascular progenitor cells participate in early vessel neomuscularization during experimental pulmonary hypertension (PH) and we addressed the role of the platelet-derived growth factor receptor type α (PDGFRα) pathway in progenitor cell-dependent vascular remodeling and in PH development. Methods and Results Remodeled pulmonary arteries from patients with idiopathic pulmonary arterial hypertension showed an increased number of perivascular and vascular PW1+ cells expressing PDGFRα. PW1nLacZ reporter mice were used to follow the fate of pulmonary PW1+ progenitor cells in a model of chronic hypoxia-induced PH development. Under chronic hypoxia, PDGFRα inhibition prevented the increase in PW1+ progenitor cell proliferation and differentiation into vascular smooth muscle cells and reduced pulmonary vessel neomuscularization, but did not prevent an increased right ventricular systolic pressure or the development of right ventricular hypertrophy. Conversely, constitutive PDGFRα activation led to neomuscularization via PW1+ progenitor cell differentiation into new smooth muscle cells and to PH development in male mice without fibrosis. In vitro, PW1+ progenitor cell proliferation, but not differentiation, was dependent on PDGFRα activity. Conclusions These results demonstrate a major role of PDGFRα signaling in progenitor cell-dependent lung vessel neomuscularization and vascular remodeling contributing to PH development, including in idiopathic pulmonary arterial hypertension patients. Our findings suggest that PDGFRα blockers may offer a therapeutic add-on strategy to combine with current pulmonary arterial hypertension treatments to reduce vascular remodeling. Furthermore, our study highlights constitutive PDGFRα activation as a novel experimental PH model.


Subject(s)
Hypertension, Pulmonary , Receptor, Platelet-Derived Growth Factor alpha , Animals , Cell Proliferation , Cells, Cultured , Humans , Hypertension, Pulmonary/metabolism , Hypoxia , Lung , Male , Mice , Muscle, Smooth, Vascular/metabolism , Myocytes, Smooth Muscle/metabolism , Pulmonary Artery , Receptor, Platelet-Derived Growth Factor alpha/metabolism , Vascular Remodeling
7.
Cardiovasc Res ; 118(15): 3126-3139, 2022 12 09.
Article in English | MEDLINE | ID: mdl-34971360

ABSTRACT

AIMS: Obesity, diabetes, and metabolic syndromes are risk factors of atrial fibrillation (AF). We tested the hypothesis that metabolic disorders have a direct impact on the atria favouring the formation of the substrate of AF. METHODS AND RESULTS: Untargeted metabolomic and lipidomic analysis was used to investigate the consequences of a prolonged high-fat diet (HFD) on mouse atria. Atrial properties were characterized by measuring mitochondria respiration in saponin-permeabilized trabeculae, by recording action potential (AP) with glass microelectrodes in trabeculae and ionic currents in myocytes using the perforated configuration of patch clamp technique and by several immuno-histological and biochemical approaches. After 16 weeks of HFD, obesogenic mice showed a vulnerability to AF. The atrial myocardium acquired an adipogenic and inflammatory phenotypes. Metabolomic and lipidomic analysis revealed a profound transformation of atrial energy metabolism with a predominance of long-chain lipid accumulation and beta-oxidation activation in the obese mice. Mitochondria respiration showed an increased use of palmitoyl-CoA as energy substrate. APs were short duration and sensitive to the K-ATP-dependent channel inhibitor, whereas K-ATP current was enhanced in isolated atrial myocytes of obese mouse. CONCLUSION: HFD transforms energy metabolism, causes fat accumulation, and induces electrical remodelling of the atrial myocardium of mice that become vulnerable to AF.


Subject(s)
Atrial Fibrillation , Diet, High-Fat , Mice , Animals , Atrial Fibrillation/etiology , Metabolomics , Metabolome , Adenosine Triphosphate
8.
Intractable Rare Dis Res ; 10(4): 269-275, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34877239

ABSTRACT

Duchenne muscular dystrophy (DMD) is a recessive hereditary myopathy due to deficiency of functional dystrophin. Current therapeutic interventions need more investigation to slow down the progression of skeletal and cardiac muscle weakness. In humans, there is a lack of an adapted training program. In animals, the murine Mdx model with a DBA/2J background (D2-mdx) was recently suggested to present pathological features closer to that of humans. In this study, we characterized skeletal and cardiac muscle functions in males and females D2-mdx mice compared to control groups. We also evaluated the impact of high intensity interval training (HIIT) in these muscles in females and males. HIIT was performed 5 times per week during a month on a motorized treadmill. Specific maximal isometric force production and weakness were measured in the tibialis anterior muscle (TA). Sedentary male and female D2-mdx mice produced lower absolute and specific maximal force compared to control mice. Dystrophic mice showed a decline of force generation during repetitive stimulation compared to controls. This reduction was greater for male D2-mdx mice than females. Furthermore, trained D2-mdx males showed an improvement in force generation after the fifth lengthening contraction compared to sedentary D2-mdx males. Moreover, echocardiography measures revealed a decrease in left ventricular end-diastolic volume, left ventricular ejection volume and left ventricular end-diastolic diameter in sedentary male and female D2-mdx mice. Overall, our results showed a serious muscle function alteration in female and male D2-mdx mice compared to controls. HIIT may delay force loss especially in male D2-mdx mice.

9.
Front Physiol ; 12: 661413, 2021.
Article in English | MEDLINE | ID: mdl-34122134

ABSTRACT

Loss-of-function mutations in the cardiac Na+ channel α-subunit Nav1.5, encoded by SCN5A, cause Brugada syndrome (BrS), a hereditary disease characterized by sudden cardiac death due to ventricular fibrillation. We previously evidenced in vitro the dominant-negative effect of the BrS Nav1.5-R104W variant, inducing retention of wild-type (WT) channels and leading to a drastic reduction of the resulting Na+ current (I Na ). To explore this dominant-negative effect in vivo, we created a murine model using adeno-associated viruses (AAVs). METHODS: Due to the large size of SCN5A, a dual AAV vector strategy was used combining viral DNA recombination and trans-splicing. Mice were injected with two AAV serotypes capsid 9: one packaging the cardiac specific troponin-T promoter, the 5' half of hSCN5A cDNA, a splicing donor site and a recombinogenic sequence; and another packaging the complementary recombinogenic sequence, a splicing acceptor site, the 3' half of hSCN5A cDNA fused to the gfp gene sequence, and the SV40 polyA signal. Eight weeks after AAV systemic injection in wild-type (WT) mice, echocardiography and ECG were recorded and mice were sacrificed. The full-length hSCN5A-gfp expression was assessed by western blot and immunohistochemistry in transduced heart tissues and the Na+ current was recorded by the patch-clamp technique in isolated adult GFP-expressing heart cells. RESULTS: Almost 75% of the cardiomyocytes were transduced in hearts of mice injected with hNav1.5 and ∼30% in hNav1.5-R104W overexpressing tissues. In ventricular mice cardiomyocytes expressing R104W mutant channels, the endogenous I Na was significantly decreased. Moreover, overexpression of R104W channels in normal hearts led to a decrease of total Nav1.5 expression. The R104W mutant also induced a slight dilatation of mice left ventricles and a prolongation of RR interval and P-wave duration in transduced mice. Altogether, our results demonstrated an in vivo dominant-negative effect of defective R104W channels on endogenous ones. CONCLUSION: Using a trans-splicing and viral DNA recombination strategy to overexpress the Na+ channel in mouse hearts allowed us to demonstrate in vivo the dominant-negative effect of a BrS variant identified in the N-terminus of Nav1.5.

10.
Int J Mol Sci ; 22(7)2021 Mar 29.
Article in English | MEDLINE | ID: mdl-33805532

ABSTRACT

Dilated cardiomyopathy (DCM) is a disease of multifactorial etiologies, the risk of which is increased by male sex and age. There are few therapeutic options for patients with DCM who would benefit from identification of common targetable pathways. We used bioinformatics to identify the Nmrk2 gene involved in nicotinamide adenine dinucleotde (NAD) coenzyme biosynthesis as activated in different mouse models and in hearts of human patients with DCM while the Nampt gene controlling a parallel pathway is repressed. A short NMRK2 protein isoform is also known as muscle integrin binding protein (MIBP) binding the α7ß1 integrin complex. We investigated the cardiac phenotype of Nmrk2-KO mice to establish its role in cardiac remodeling and function. Young Nmrk2-KO mice developed an eccentric type of cardiac hypertrophy in response to pressure overload rather than the concentric hypertrophy observed in controls. Nmrk2-KO mice developed a progressive DCM-like phenotype with aging, associating eccentric remodeling of the left ventricle and a decline in ejection fraction and showed a reduction in myocardial NAD levels at 24 months. In agreement with involvement of NMRK2 in integrin signaling, we observed a defect in laminin deposition in the basal lamina of cardiomyocytes leading to increased fibrosis at middle age. The α7 integrin was repressed at both transcript and protein level at 24 months. Nmrk2 gene is required to preserve cardiac structure and function, and becomes an important component of the NAD biosynthetic pathways during aging. Molecular characterization of compounds modulating this pathway may have therapeutic potential.


Subject(s)
Aging/genetics , Cardiomyopathy, Dilated/genetics , NAD/metabolism , Niacinamide/metabolism , Phosphotransferases (Alcohol Group Acceptor)/genetics , Aging/physiology , Animals , Cardiomegaly/genetics , Cytosol/metabolism , Disease Models, Animal , Electrocardiography , Gene Expression Regulation , Humans , Intracellular Signaling Peptides and Proteins/genetics , Laminin/metabolism , Mice, Inbred C57BL , Mice, Knockout , Niacinamide/genetics , Phosphotransferases (Alcohol Group Acceptor)/metabolism , Up-Regulation , Ventricular Remodeling/genetics
11.
Acta Biomater ; 119: 125-139, 2021 01 01.
Article in English | MEDLINE | ID: mdl-33161185

ABSTRACT

This work explores the epicardial implantation of acellular chitosan hydrogels in two murine models of cardiomyopathy, focusing on their potential to restore the functional capacity of the heart. Different chitosan hydrogels were generated using polymers of four degrees of acetylation, ranging from 2.5% to 38%, because the degree of acetylation affects their degradation and biological activity. The hydrogels were adjusted to a 3% final polymer concentration. After complete macromolecular characterization of the chitosans and study of the mechanical properties of the resulting hydrogels, they were sutured onto the surface of the myocardium, first in rat after four-weeks of coronary ligation (n=58) then in mice with cardiomyopathy induced by a cardiac-specific invalidation of serum response factor (n=20). The implantation of the hydrogels was associated with a reversion of cardiac function loss with maximal effects for the acetylation degree of 24%. The extent of fibrosis, the cardiomyocyte length-to-width ratio, as well as the genes involved in fibrosis and stress were repressed after implantation. Our study demonstrated the beneficial effects of chitosan hydrogels, particularly with polymers of high degrees of acetylation, on cardiac remodeling in two cardiomyopathy models. Our findings indicate they have great potential as a reliable therapeutic approach to heart failure.


Subject(s)
Chitosan , Heart Failure , Acetylation , Animals , Chitosan/pharmacology , Hydrogels/pharmacology , Mice , Myocardium/metabolism , Rats
12.
Sci Rep ; 10(1): 11404, 2020 07 09.
Article in English | MEDLINE | ID: mdl-32647159

ABSTRACT

There is currently no therapy to limit the development of cardiac fibrosis and consequent heart failure. We have recently shown that cardiac fibrosis post-myocardial infarction (MI) can be regulated by resident cardiac cells with a fibrogenic signature and identified by the expression of PW1 (Peg3). Here we identify αV-integrin (CD51) as an essential regulator of cardiac PW1+ cells fibrogenic behavior. We used transcriptomic and proteomic approaches to identify specific cell-surface markers for cardiac PW1+ cells and found that αV-integrin (CD51) was expressed in almost all cardiac PW1+ cells (93% ± 1%), predominantly as the αVß1 complex. αV-integrin is a subunit member of the integrin family of cell adhesion receptors and was found to activate complex of latent transforming growth factor beta (TGFß at the surface of cardiac PW1+ cells. Pharmacological inhibition of αV-integrin reduced the profibrotic action of cardiac PW1+CD51+ cells and was associated with improved cardiac function and animal survival following MI coupled with a reduced infarct size and fibrotic lesion. These data identify a targetable pathway that regulates cardiac fibrosis in response to an ischemic injury and demonstrate that pharmacological inhibition of αV-integrin could reduce pathological outcomes following cardiac ischemia.


Subject(s)
Integrin alphaV/drug effects , Myocardial Infarction/drug therapy , Snake Venoms/therapeutic use , Stromal Cells/drug effects , Animals , Cells, Cultured , Drug Evaluation, Preclinical , Fibrosis , Integrin alphaV/physiology , Kruppel-Like Transcription Factors/analysis , Male , Mice , Mice, Inbred C57BL , Myocardial Infarction/genetics , Myocardial Infarction/pathology , Myocardium/pathology , Myocytes, Cardiac/metabolism , RNA, Messenger/biosynthesis , Single-Cell Analysis , Snake Venoms/pharmacology , Stromal Cells/chemistry , Transforming Growth Factor beta1/pharmacology
13.
Biochem Biophys Rep ; 22: 100767, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32490213

ABSTRACT

Cardiomyopathy caused by A-type lamins gene (LMNA) mutations (LMNA cardiomyopathy) is associated with dysfunction of the heart, often leading to heart failure. LMNA cardiomyopathy is highly penetrant with bad prognosis with no specific therapy available. Searching for alternative ways to halt the progression of LMNA cardiomyopathy, we studied the role of calcium homeostasis in the evolution of this disease. We showed that sarcolipin, an inhibitor of the sarco/endoplasmic reticulum (SR) Ca2+ ATPase (SERCA) was abnormally elevated in the ventricular cardiomyocytes of mutated mice compared with wild type mice, leading to an alteration of calcium handling. This occurs early in the progression of the disease, when the left ventricular function was not altered. We further demonstrated that down regulation of sarcolipin using adeno-associated virus (AAV) 9-mediated RNA interference delays cardiac dysfunction in mouse model of LMNA cardiomyopathy. These results showed a novel role for sarcolipin on calcium homeostasis in heart and open perspectives for future therapeutic interventions to LMNA cardiomyopathy.

14.
Mol Ther Methods Clin Dev ; 17: 695-708, 2020 Jun 12.
Article in English | MEDLINE | ID: mdl-32346547

ABSTRACT

Duchenne muscular dystrophy (DMD) is a devastating neuromuscular disease caused by an absence of the dystrophin protein, which is essential for muscle fiber integrity. Among the developed therapeutic strategies for DMD, the exon-skipping approach corrects the frameshift and partially restores dystrophin expression. It could be achieved through the use of antisense sequences, such as peptide-conjugated phosphorodiamidate morpholino oligomer (PPMO) or the small nuclear RNA-U7 carried by an adeno-associated virus (AAV) vector. AAV-based gene therapy approaches have potential for use in DMD treatment but are subject to a major limitation: loss of the AAV genome, necessitating readministration of the vector, which is not currently possible, due to the immunogenicity of the capsid. The PPMO approach requires repeated administrations and results in only weak cardiac dystrophin expression. Here, we evaluated a combination of PPMO- and AAV-based therapy in a mouse model of severe DMD. Striking benefits of this combined therapy were observed in striated muscles, with marked improvements in heart and diaphragm structure and function, with unrivalled extent of survival, opening novel therapeutic perspectives for patients.

15.
Circ Res ; 126(10): 1330-1342, 2020 05 08.
Article in English | MEDLINE | ID: mdl-32175811

ABSTRACT

RATIONALE: Fibro-fatty infiltration of subepicardial layers of the atrial wall has been shown to contribute to the substrate of atrial fibrillation. OBJECTIVE: Here, we examined if the epicardium that contains multipotent cells is involved in this remodeling process. METHODS AND RESULTS: One hundred nine human surgical right atrial specimens were evaluated. There was a relatively greater extent of epicardial thickening and dense fibro-fatty infiltrates in atrial tissue sections from patients aged over 70 years who had mitral valve disease or atrial fibrillation when compared with patients aged less than 70 years with ischemic cardiomyopathy as indicated using logistic regression adjusted for age and gender. Cells coexpressing markers of epicardial progenitors and fibroblasts were detected in fibro-fatty infiltrates. Such epicardial remodeling was reproduced in an experimental model of atrial cardiomyopathy in rat and in Wilms tumor 1 (WT1)CreERT2/+;ROSA-tdT+/- mice. In the latter, genetic lineage tracing demonstrated the epicardial origin of fibroblasts within fibro-fatty infiltrates. A subpopulation of human adult epicardial-derived cells expressing PDGFR (platelet-derived growth factor receptor)-α were isolated and differentiated into myofibroblasts in the presence of Ang II (angiotensin II). Furthermore, single-cell RNA-sequencing analysis identified several clusters of adult epicardial-derived cells and revealed their specification from adipogenic to fibrogenic cells in the rat model of atrial cardiomyopathy. CONCLUSIONS: Epicardium is reactivated during the formation of the atrial cardiomyopathy. Subsets of adult epicardial-derived cells, preprogrammed towards a specific cell fate, contribute to fibro-fatty infiltration of subepicardium of diseased atria. Our study reveals the biological basis for chronic atrial myocardial remodeling that paves the way of atrial fibrillation.


Subject(s)
Adipose Tissue/pathology , Atrial Fibrillation/etiology , Atrial Remodeling , Cardiomyopathies/complications , Heart Atria/pathology , Myocardium/pathology , Pericardium/pathology , Action Potentials , Adipocytes/metabolism , Adipocytes/pathology , Adipose Tissue/metabolism , Aged , Animals , Atrial Fibrillation/metabolism , Atrial Fibrillation/pathology , Atrial Fibrillation/physiopathology , Cardiomyopathies/metabolism , Cardiomyopathies/pathology , Cardiomyopathies/physiopathology , Cell Lineage , Disease Models, Animal , Female , Fibroblasts/metabolism , Fibroblasts/pathology , Fibrosis , Heart Atria/metabolism , Heart Atria/physiopathology , Heart Rate , Humans , Male , Mice, Inbred C57BL , Mice, Transgenic , Myocardium/metabolism , Pericardium/metabolism , Pericardium/physiopathology , Rats, Wistar , Stem Cells/metabolism , Stem Cells/pathology , WT1 Proteins/genetics , WT1 Proteins/metabolism
16.
J Clin Invest ; 130(5): 2630-2643, 2020 05 01.
Article in English | MEDLINE | ID: mdl-32045382

ABSTRACT

Arterial cardiovascular events are the leading cause of death in patients with JAK2V617F myeloproliferative neoplasms (MPNs). However, their mechanisms are poorly understood. The high prevalence of myocardial infarction without significant coronary stenosis or atherosclerosis in patients with MPNs suggests that vascular function is altered. The consequences of JAK2V617F mutation on vascular reactivity are unknown. We observe here increased responses to vasoconstrictors in arteries from Jak2V617F mice resulting from a disturbed endothelial NO pathway and increased endothelial oxidative stress. This response was reproduced in WT mice by circulating microvesicles isolated from patients carrying JAK2V617F and by erythrocyte-derived microvesicles from transgenic mice. Microvesicles of other cellular origins had no effect. This effect was observed ex vivo on isolated aortas, but also in vivo on femoral arteries. Proteomic analysis of microvesicles derived from JAK2V617F erythrocytes identified increased expression of myeloperoxidase as the likely mechanism accounting for their effect. Myeloperoxidase inhibition in microvesicles derived from JAK2V617F erythrocytes suppressed their effect on oxidative stress. Antioxidants such as simvastatin and N-acetyl cysteine improved arterial dysfunction in Jak2V617F mice. In conclusion, JAK2V617F MPNs are characterized by exacerbated vasoconstrictor responses resulting from increased endothelial oxidative stress caused by circulating erythrocyte-derived microvesicles. Simvastatin appears to be a promising therapeutic strategy in this setting.


Subject(s)
Erythrocytes/physiology , Gain of Function Mutation , Janus Kinase 2/genetics , Janus Kinase 2/physiology , Myeloproliferative Disorders/genetics , Myeloproliferative Disorders/physiopathology , Animals , Antioxidants/pharmacology , Aorta, Thoracic/drug effects , Aorta, Thoracic/physiopathology , Cardiovascular Diseases/etiology , Cardiovascular Diseases/genetics , Cardiovascular Diseases/physiopathology , Cell-Derived Microparticles/physiology , Femoral Artery/drug effects , Femoral Artery/physiopathology , Humans , In Vitro Techniques , Mice , Mice, Inbred C57BL , Mice, Transgenic , Myeloproliferative Disorders/complications , Oxidative Stress , Simvastatin/pharmacology , Vasoconstriction/drug effects , Vasoconstriction/physiology
17.
FASEB J ; 34(2): 2987-3005, 2020 02.
Article in English | MEDLINE | ID: mdl-31908029

ABSTRACT

The expression of α-cardiac actin, a major constituent of the cytoskeleton of cardiomyocytes, is dramatically decreased in a mouse model of dilated cardiomyopathy triggered by inducible cardiac-specific serum response factor (Srf) gene disruption that could mimic some forms of human dilated cardiomyopathy. To investigate the consequences of the maintenance of α-cardiac actin expression in this model, we developed a new transgenic mouse based on Cre/LoxP strategy, allowing together the induction of SRF loss and a compensatory expression of α-cardiac actin. Here, we report that maintenance of α-cardiac actin within cardiomyocytes temporally preserved cytoarchitecture from adverse cardiac remodeling through a positive impact on both structural and transcriptional levels. These protective effects were accompanied in vivo by the decrease of ROS generation and protein carbonylation and the downregulation of NADPH oxidases NOX2 and NOX4. We also show that ectopic expression of α-cardiac actin protects HEK293 cells against oxidative stress induced by H2 O2 . Oxidative stress plays an important role in the development of cardiac remodeling and contributes also to the pathogenesis of heart failure. Taken together, these findings indicate that α-cardiac actin could be involved in the regulation of oxidative stress that is a leading cause of adverse remodeling during dilated cardiomyopathy development.


Subject(s)
Actins/metabolism , Cardiomyopathy, Dilated/metabolism , Myocytes, Cardiac/metabolism , Oxidative Stress , Actins/genetics , Animals , Cardiomyopathy, Dilated/genetics , Cardiomyopathy, Dilated/pathology , Cardiomyopathy, Dilated/prevention & control , Disease Models, Animal , Female , Humans , Hydrogen Peroxide/pharmacology , Male , Mice , Mice, Transgenic , Myocytes, Cardiac/pathology , NADPH Oxidase 2/genetics , NADPH Oxidase 2/metabolism , NADPH Oxidase 4/genetics , NADPH Oxidase 4/metabolism
18.
Curr Vasc Pharmacol ; 18(5): 507-516, 2020.
Article in English | MEDLINE | ID: mdl-31284864

ABSTRACT

OBJECTIVE: Restenosis is a frequent complication of angioplasty. It consists of a neointimal hyperplasia resulting from progression and migration of vascular smooth muscle cells (VSMC) into the vessel lumen. microRNA miR-223 has recently been shown to be involved in cardiovascular diseases including atherosclerosis, vascular calcification and arterial thrombosis. In this study, our aim was to assess the impact of miR-223 modulation on restenosis in a rat model of carotid artery after balloon injury. METHODS: The over and down-expression of miR-223 was induced by adenoviral vectors, containing either a pre-miR-223 sequence allowing artificial miR-223 expression or a sponge sequence, trapping the native microRNA, respectively. Restenosis was quantified on stained rat carotid sections. RESULTS: In vitro, three mRNA (Myocyte Enhancer Factor 2C (MEF2C), Ras homolog gene family, member B (RhoB) and Nuclear factor 1 A-type (NFIA)) reported as miR-223 direct targets and known to be implicated in VSMC differentiation and contractility were studied by RT-qPCR. Our findings showed that down-expression of miR-223 significantly reduced neointimal hyperplasia by 44% in carotids, and was associated with a 2-3-fold overexpression of MEF2C, RhoB and NFIA in a murine monocyte macrophage cell line, RAW 264.7 cells. CONCLUSION: Down-regulating miR-223 could be a potential therapeutic approach to prevent restenosis after angioplasty.


Subject(s)
Carotid Arteries/metabolism , Carotid Artery Injuries/therapy , Carotid Stenosis/prevention & control , Genetic Therapy , MicroRNAs/metabolism , Angioplasty, Balloon , Animals , Carotid Arteries/pathology , Carotid Artery Injuries/genetics , Carotid Artery Injuries/metabolism , Carotid Artery Injuries/pathology , Carotid Stenosis/genetics , Carotid Stenosis/metabolism , Carotid Stenosis/pathology , Disease Models, Animal , Down-Regulation , Male , Mice , MicroRNAs/genetics , Neointima , RAW 264.7 Cells , Rats, Wistar , Signal Transduction
19.
Biochem Biophys Rep ; 19: 100664, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31341969

ABSTRACT

A-type lamins gene (LMNA) mutations cause an autosomal dominant inherited form of Emery-Dreifuss muscular dystrophy (EDMD). EDMD is characterized by slowly progressive muscle weakness and wasting and dilated cardiomyopathy, often leading to heart failure-related disability. EDMD is highly penetrant with poor prognosis and there is currently no specific therapy available. Clinical variability ranges from early onset with severe presentation in childhood to late onset with slow progression in adulthood. Genetic background is a well-known factor that significantly affects phenotype in several mouse models of human diseases. This phenotypic variability is attributed, at least in part, to genetic modifiers that regulate the disease process. To characterize the phenotype of A-type lamins mutation on different genetic background, we created and phenotyped C57BL/6JRj-Lmna H222P/H222P mice (C57 Lmna p.H222P) and compared them with the 129S2/SvPasCrl-Lmna H222P/H222P mice (129 Lmna p.H222P). These mouse strains were compared with their respective control strains at multiple time points between 3 and 10 months of age. Both contractile and electrical cardiac muscle functions, as well as survival were characterized. We found that 129 Lmna p.H222P mice showed significantly reduced body weight and reduced cardiac function earlier than in the C57 Lmna p.H222P mice. We also revealed that only 129 Lmna p.H222P mice developed heart arrhythmias. The 129 Lmna p.H222P model with an earlier onset and more pronounced cardiac phenotype may be more useful for evaluating therapies that target cardiac muscle function, and heart arrhythmias.

20.
Hum Mol Genet ; 28(13): 2237-2244, 2019 07 01.
Article in English | MEDLINE | ID: mdl-31220270

ABSTRACT

Autosomal Emery-Dreifuss muscular dystrophy (EDMD) is caused by mutations in the lamin A/C gene (LMNA) encoding A-type nuclear lamins, intermediate filament proteins of the nuclear envelope. Classically, the disease manifests as scapulo-humero-peroneal muscle wasting and weakness, early joint contractures and dilated cardiomyopathy with conduction blocks; however, variable skeletal muscle involvement can be present. Previously, we and other demonstrated altered activity of signaling pathways in hearts and striated muscles of LmnaH222P/H222P mice, a model of autosomal EDMD. We showed that blocking their activation improved cardiac function. However, the evaluation of the benefit of these treatments on the whole organism is suffering from a better knowledge of the performance in mouse models. We show in the present study that LmnaH222P/H222P mice display a significant loss of lean mass, consistent with the dystrophic process. This is associated with altered VO2 peak and respiratory exchange ratio. These results showed for the first time that LmnaH222P/H222P mice have decreased performance and provided a new useful means for future therapeutic interventions on this model of EDMD.


Subject(s)
Lamin Type A/genetics , Muscular Dystrophy, Emery-Dreifuss/genetics , Animals , Body Composition , Disease Models, Animal , Male , Mice , Mice, Transgenic , Muscular Dystrophy, Emery-Dreifuss/metabolism , Muscular Dystrophy, Emery-Dreifuss/physiopathology , Mutation , Ventricular Function, Left , Weight Loss
SELECTION OF CITATIONS
SEARCH DETAIL