Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters








Database
Language
Publication year range
1.
Cancer Sci ; 115(6): 2036-2048, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38613358

ABSTRACT

Triple-negative breast cancer (TNBC) patients harboring wild-type breast cancer susceptibility gene 1 (BRCA1) account for most TNBC patients but lack adequate targeted therapeutic options. Although radiotherapy (RT) is the primary treatment modality for TNBC patients, radioresistance is one of the major challenges. RT-induced increase in cathepsin S (CTSS) causes radioresistance through suppressing BRCA1-mediated apoptosis of tumor cells, which was induced by CTSS-mediated degradation of BRCA1. Targeting CTSS may provide a novel therapeutic opportunity for TNBC patients. Publicly available data and human tissue microarray slides were analyzed to investigate the relationship between CTSS and BRCA1 in breast cancer patients. A CTSS enzyme assay and in silico docking analysis were conducted to identify a novel CTSS inhibitor. RO5461111 was used first to confirm the concept of targeting CTSS for radiosensitizing effects. The MDA-MB-231 TNBC cell line was used for in vitro and in vivo assays. Western blotting, promoter assay, cell death assay, clonogenic survival assay, and immunohistochemistry staining were conducted to evaluate novel CTSS inhibitors. CTSS inhibitors were further evaluated for their additional benefit of inhibiting cell migration. A novel CTSS inhibitor, TS-24, increased BRCA1 protein levels and showed radiosensitization in TNBC cells with wild-type BRCA1 and in vivo in a TNBC xenograft mouse model. These effects were attributed by BRCA1-mediated apoptosis facilitated by TS-24. Furthermore, TS-24 demonstrated the additional effect of inhibiting cell migration. Our study suggests that employing CTSS inhibitors for the functional restoration of BRCA1 to enhance RT-induced apoptosis may provide a novel therapeutic opportunity for TNBC patients harboring wild-type BRCA1.


Subject(s)
Apoptosis , BRCA1 Protein , Radiation-Sensitizing Agents , Triple Negative Breast Neoplasms , Animals , Female , Humans , Mice , Apoptosis/drug effects , Cathepsins/metabolism , Cathepsins/antagonists & inhibitors , Cell Line, Tumor , Cell Movement/drug effects , Mice, Nude , Protein Stability/drug effects , Radiation Tolerance/drug effects , Radiation-Sensitizing Agents/pharmacology , Triple Negative Breast Neoplasms/radiotherapy , Triple Negative Breast Neoplasms/metabolism , Triple Negative Breast Neoplasms/pathology , Triple Negative Breast Neoplasms/drug therapy , Xenograft Model Antitumor Assays
2.
Biomed Pharmacother ; 158: 114090, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36493696

ABSTRACT

Mutations in breast cancer-associated 1 (BRCA1) increase the lifetime risk of developing breast cancer by up to 51% over the risk of the general population. Many aspects of this multifunctional protein have been revealed, including its essential role in homologous recombination repair, E3 ubiquitin ligase activity, transcriptional regulation, and apoptosis. Although most studies have focused on BRCA1 deficiency due to mutations, only a minority of patients carry BRCA1 mutations. A recent study has suggested an expanded definition of BRCA1 deficiency with reduced BRCA1 levels, which accounts for almost half of all triple-negative breast cancer (TNBC) patients. Reduced BRCA1 levels can result from epigenetic modifications or increased proteasomal degradation. In this review, we discuss how this knowledge of BRCA1 function and regulation of BRCA1 protein stability can help overcome the challenges encountered in the clinic and advance current treatment strategies for BRCA1-related breast cancer patients, especially focusing on TNBC.


Subject(s)
Triple Negative Breast Neoplasms , Humans , Triple Negative Breast Neoplasms/genetics , Triple Negative Breast Neoplasms/therapy , BRCA1 Protein/genetics , BRCA1 Protein/metabolism , Mutation , DNA Repair , Protein Stability
3.
Nat Commun ; 13(1): 6732, 2022 11 08.
Article in English | MEDLINE | ID: mdl-36347866

ABSTRACT

Aminoacyl-tRNA synthetases (ARSs) have evolved to acquire various additional domains. These domains allow ARSs to communicate with other cellular proteins in order to promote non-translational functions. Vertebrate cytoplasmic isoleucyl-tRNA synthetases (IARS1s) have an uncharacterized unique domain, UNE-I. Here, we present the crystal structure of the chicken IARS1 UNE-I complexed with glutamyl-tRNA synthetase 1 (EARS1). UNE-I consists of tandem ubiquitin regulatory X (UBX) domains that interact with a distinct hairpin loop on EARS1 and protect its neighboring proteins in the multi-synthetase complex from degradation. Phosphomimetic mutation of the two serine residues in the hairpin loop releases IARS1 from the complex. IARS1 interacts with BRCA1 in the nucleus, regulates its stability by inhibiting ubiquitylation via the UBX domains, and controls DNA repair function.


Subject(s)
Amino Acyl-tRNA Synthetases , Isoleucine-tRNA Ligase , Isoleucine-tRNA Ligase/chemistry , Amino Acyl-tRNA Synthetases/metabolism , Glutamate-tRNA Ligase/chemistry , RNA, Transfer/metabolism
4.
Cell Death Dis ; 11(5): 395, 2020 05 26.
Article in English | MEDLINE | ID: mdl-32457290

ABSTRACT

The acquisition of MDR1-mediated chemoresistance poses a major obstacle to the success of conventional chemotherapeutic agents. HSF1 is also involved in chemoresistance, and several studies have demonstrated the relationship between HSF1 and MDR1 but without any consistent results. Paclitaxel- and doxorubicin-resistant cancer cells showed higher expression of MDR1 and HSF1. Depletion of HSF1 decreased mdr1 expression at mRNA level, and HSF1 directly interacted with the promoter site of mdr1, suggesting its role as a transcriptional regulator of MDR1. Phosphorylation of Ser303/307, which was involved in protein stability of HSF1 by FBXW7-mediated degradation, was found to be important for transcriptional activation of mdr1. Drug-resistant cells showed decreased expression of FBXW7, which was mediated by the activation of ERK1/2, thus indicating that over-activation of ERK1/2 in drug-resistant cells decreased FBXW7 protein stability, which finally inhibited protein degradation of pHSF1 at Ser303/307. There was a positive correlation between immunofluorescence data of pHSF1 at Ser303/307 and MDR1 in carcinogen-induced rat mammary tumors and human lung cancers. These findings identified the post-translational mechanisms of HSF1 transcription in MDR1 regulation of drug resistance development.


Subject(s)
F-Box-WD Repeat-Containing Protein 7/metabolism , Heat Shock Transcription Factors/metabolism , Ubiquitin/metabolism , ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism , Animals , Antineoplastic Agents/pharmacology , Doxorubicin/pharmacology , Drug Resistance, Neoplasm/drug effects , Gene Expression Regulation, Neoplastic/drug effects , Heat Shock Transcription Factors/genetics , Humans , Rats, Sprague-Dawley
5.
Arch Pharm Res ; 43(2): 272-274, 2020 02.
Article in English | MEDLINE | ID: mdl-31832995

ABSTRACT

We apologize that there are some errors in the references for three sentences and Table 2.

6.
Arch Pharm Res ; 42(8): 732-734, 2019 08.
Article in English | MEDLINE | ID: mdl-31209736

ABSTRACT

We apologize that there are some errors in the references for three sentences and Table 2.

7.
Arch Pharm Res ; 41(11): 1033-1050, 2018 Nov.
Article in English | MEDLINE | ID: mdl-30361949

ABSTRACT

Radiotherapy is one of the most efficient ways to treat cancer. However, deleterious effects, such as acute and chronic toxicities that reduce the quality of life, may result. Naturally occurring compounds have been shown to be non-toxic over wide dose ranges and are inexpensive and effective. Additionally, pharmacological strategies have been developed that use radioprotectors to inhibit radiation-induced toxicities. Currently available radioprotectors have several limitations, including toxicity. In this review, we present the mechanisms of proven radioprotectors, ranging from free radical scavenging (the best-known mechanism of radioprotection) to molecular-based radioprotection (e.g., upregulating expression of heat shock proteins). Finally, we discuss naturally occurring compounds with radioprotective properties in the context of these mechanisms.


Subject(s)
Biological Products/pharmacology , Radiation Injuries/prevention & control , Radiation-Protective Agents/pharmacology , Radiotherapy/adverse effects , Animals , Apoptosis/drug effects , Biological Products/isolation & purification , DNA Repair , Free Radicals/metabolism , Humans , Neoplasms/therapy , Quality of Life , Radiation Injuries/genetics , Radiation Injuries/immunology , Radiation Injuries/pathology , Radiation-Protective Agents/isolation & purification
8.
Food Chem Toxicol ; 111: 125-132, 2018 Jan.
Article in English | MEDLINE | ID: mdl-29128613

ABSTRACT

An association between bisphenol A (BPA) exposure and hepatic tumors was suggested, but the employment of high-dose levels raises questions about its relevance to human health. Here, we demonstrate that submicromolar concentrations of BPA induce the proliferation and DNA damage in human hepatocyte cell lines. In HepG2 and NKNT-3, undifferentiated and differentiated hepatocyte cell lines, respectively, submicromolar BPA concentrations promoted the cell proliferation, as indicated by enhanced DNA synthesis and elevated expression of cell-cycle proteins. At concentrations higher than 10 µM, these effects disappeared, reflecting a non-monotonic dose-response relationship. Notably, histone H2AX was activated following exposure to BPA, which is a sensitive marker of DNA damage. Importantly, proliferative foci and DNA damage were also observed in liver tissue of rats orally exposed to BPA at 0.5 mg/kg for 90 days, from juvenile age (postnatal day 9) through adulthood. Reactive oxygen species appeared to play a role in the BPA-induced proliferation and DNA damage, as evidenced by a partial reversal of both processes upon pretreatment with an antioxidant, N-acetylcysteine. Collectively, these results demonstrate that submicromolar BPA concentrations induce the DNA damage and promote the cell proliferation in the liver, which may support its role as a risk factor for hepatocarcinogenicity.


Subject(s)
Benzhydryl Compounds/pharmacology , Cell Proliferation/drug effects , DNA Damage/drug effects , Hepatocytes/drug effects , Phenols/pharmacology , Animals , Benzhydryl Compounds/administration & dosage , Benzhydryl Compounds/chemistry , Cell Line , Free Radical Scavengers/administration & dosage , Free Radical Scavengers/chemistry , Free Radical Scavengers/pharmacology , Gene Expression Regulation/drug effects , Histones/genetics , Histones/metabolism , Humans , Phenols/administration & dosage , Phenols/chemistry , Rats , Reactive Oxygen Species
9.
J Nat Prod ; 80(8): 2379-2383, 2017 08 25.
Article in English | MEDLINE | ID: mdl-28737916

ABSTRACT

Coniferyl aldehyde (1) is previously reported as a potent inducer of heat shock factor 1 (HSF1). Here, we further examined the active pharmacophore of 1 for activation of HSF1 using the derivatives coniferyl alcohol (2), 4-hydroxy-3-methoxyphenylpropanal (3), and 4-hydroxy-3-methoxyphenylpropanol (4). Both 1 and 2 resulted in increased survival days after a lethal radiation (IR) dose. The decrease in bone marrow (BM) cellularity and Ki67-positive BM cells by IR was also significantly restored by 1 or 2 in mice. These results suggested that the vinyl moiety of 1 and 2 is necessary for inducing HSF1, which may be useful for developing small molecules for cytoprotection of normal cells against damage by cytotoxic drugs and radiation.


Subject(s)
Acrolein/analogs & derivatives , Bone Marrow Cells/cytology , DNA-Binding Proteins/metabolism , Propane/analogs & derivatives , Propanols/pharmacology , Transcription Factors/metabolism , Acrolein/chemistry , Acrolein/pharmacology , Animals , Bone Marrow Cells/chemistry , DNA-Binding Proteins/chemistry , Heat Shock Transcription Factors , Mice , Molecular Structure , Propane/chemistry , Propane/pharmacology , Propanols/chemistry , Transcription Factors/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL